文献解读05-Brain Connectivity Based Graph Convolutional Networks and Its Application to Infant Age

论文信息:“Brain Connectivity Based Graph Convolutional Networks and Its Application to Infant Age Prediction”——Ieee Transactions On Medical Imaging, Vol. 41, No. 10, October 2022
译:基于脑连通性的图卷积网络及其在婴儿年龄预测中的应用
代码链接
Abstract
婴儿期是人类大脑发育的关键时期,脑年龄是与神经影像学数据相关联的脑发育状态指标之一,基于神经影像学预测的年龄与实际年龄之间的差异可以提供偏离正常发育轨迹的重要早期指标.在这项研究中,我们利用图卷积网络(GCN)预测婴儿的大脑年龄的基础上休息状态的功能磁共振成像数据。从rs-fMRI获得的大脑连接可以表示为以大脑区域为节点和功能连接为边的图。然而,由于大脑的连通性是一个完全连接的图与边缘的功能,目前的GCN不能直接使用它是一个基于节点的方法稀疏图。因此,我们提出了一种基于边的图路径卷积(GPC)方法,该方法聚合了来自不同路径的信息,并且可以自然地应用于稠密图。我们将整个模型称为脑连接图卷积网络(BC-GCN)。在此基础上,通过引入残差和注意力模块,提出了两种改进的网络结构:BC-GCNRes和BC-GCN-SE,以增强原始数据的信息量和影响力通道。此外,我们设计了一个两阶段的粗到精的框架,该框架首先确定年龄组,然后使用特定于组的BC-GCN-SE模型预测年龄。为了避免第一阶段的累积误差,第二阶段的回归模型采用了跨组训练策略。我们对6至811天龄的婴儿进行fMRI扫描。从粗到细的框架在应用于多个模型时显示出显着的改进(在10天内减少错误)。与现有方法相比,我们提出的由粗到细的模型BC-GCN-SE将预测的平均绝对误差从>70天降低到49.9天。

1.Introduction

基于神经成像的年龄预测对于大脑发育和衰老分析以及脑部疾病诊断非常重要。在儿童大脑中,“预测年龄”和“实际年龄”之间的差异或差距可以提供偏离正常发育轨迹的重要早期指标,这可能提示神经发育延迟或障碍,例如自闭症,注意力缺陷/多动障碍(ADHD)等。同时,识别出的对年龄预测最有贡献的区域和特征可以作为大脑年龄的重要生物标志物,从而帮助我们更好地了解大脑的早期发育。在临床应用中,当训练模型在健康受试者中实现的预测误差显著小于异常受试者和健康受试者之间的“脑年龄差”时,年龄预测将是有益的。

根据最近的研究,脑静息态功能磁共振成像(rs-fMRI)数据可用于预测脑年龄。基于fMRI时间序列,脑功能连接被定义为解剖学确定的脑区域之间神经元活动的时间相关性。它促进了我们对人类大脑及其发展的理解。动态功能连接(DFC)与各种不同的神经系统疾病有关,并且已被认为是功能脑网络的更准确的表示。

在过去的几年里,一些统计方法和机器学习方法已经被用于使用rs-fMRI和大脑功能连接来预测大脑年龄。例如,Monti等人提出了一种使用主成分分析(PCA)从大脑连接中提取特征的方法。在文献中,研究人员直接在函数连接矩阵上采用了支持向量机(SVM)或支持向量回归(SVR)。高斯过程回归(GPR)机器被训练来识别与给定年龄标签匹配的数据模式。Liem等人通过集成学习方法将SVR与随机森林(RF)相结合,以提高年龄预测的性能。尽管令人鼓舞,但这些方法仍然存在重大局限性,特别是在复杂的场景下,如大年龄跨度,动态早期大脑发育和有限的数据集。

随着深度学习的出现和发展,已经开发出有效的工具来识别数据中的嵌入式和高级特征,例如用于矢量的多层感知器(MLP),用于图像的卷积神经网络(CNN)和用于序列的递归神经网络(RNN)。它们都展示了比传统机器学习方法更强大的特征提取能力。在这些深度学习方法中,CNN及其扩展具有从具有规则结构的数据中提取特征的上级能力,并在基于图像的分类和回归问题中取得了巨大成功。它们已被应用于预测给定不同类型和模式的图像数据的年龄,例如面部图像和脑部MR图像。遗憾的是,大脑连通性是一种图形化的数据,这与常规的网格状图像数据有本质的不同。因此,很难直接在rs-fMRI数据上使用CNN。在连接矩阵上强制应用CNN无法提取有意义的特征,导致任务失败。

除了CNN,还有几项研究通过其他深度学习框架分析大脑连接。在文献中,分析了不同人之间连接的相似性,并选择了一些高相关性的区域来预测MLP的流体智力。He等人按照编码器-解码器、MLP和SVM的顺序构建了一个模型来预测婴儿的认知缺陷。Takagi等人从连通性中提取每个区域的特征,并将其与可学习的矩阵相乘,以预测智力和认知结果。在相关文献中,训练了一个深度编码器-解码器模型,然后使用编码的区域时间序列来诊断轻度认知障碍。这些方法都将脑连接看作一个通用的矩阵或独立的向量,没有考虑脑网络的空间结构,从而限制了其特征提取和分类回归的能力。

在数学上,大脑功能连接可以表示为全连接图,其中大脑区域被定义为节点,区域信号之间的相关性被视为边的权重。脑功能连接形成的图形有两个值得注意的特点。首先,所有的节点对都由边连接,即它是一个全连通稠密图。第二,信息包含在所有的边缘中,而节点不携带任何信息。大脑连接图的这些特点使其区别于其他一般稀疏图,需要我们设计专门的深度学习方法。BrainNetCNN是将CNN迁移到大脑连接图的一个有希望的尝试。该算法将图中的连接点看作图像中的一个像素,采用类CNN核函数计算连接点的卷积。该方法是一种有效的fMRI数据处理方法。然而,其基于CNN的操作不能捕获和表征图的拓扑信息,这限制了其特征提取能力并增加了其计算复杂度。

最近,有很多工作集中在图卷积网络(GCN)上,它结合了深度神经网络和图模型。GCN提取考虑原始输入和拓扑结构的特征,使其能够有效地分析图形数据。通过计算图拉普拉斯算子的特征分解,可以在谱域中定义图卷积运算。Defferard等人用Chebyshev多项式逼近图的Laplacian特征值矩阵。Kipf和Welling进一步简化了计算,并发展了分层卷积结构,这使得GCN易于通过矩阵乘法实现。Parisot等人提出了一个人口图,并采用GCN来预测自闭症和阿尔茨海默病。该方法以个体为节点,以rs-fMRI数据和个人数据为特征,以社会关系为连接人与人之间的边。群体图是一种基于社会关系定义的稀疏节点图,不同于基于rs-fMRI数据定义的密集边脑连通图。当前基于GCN的算法主要关注基于节点的图,其学习从节点到节点的消息传递。它更适合于节点上具有代表性特征的稀疏图,因为过多的边会带来噪声,并损害邻域聚合以及GCN的性能。然而,基于rs-fMRI的脑连接图是具有基于边的特征的全连接图。虽然我们可以通过使用基于阈值的方法使大脑连接稀疏,但它不可避免地会丢失信息。因此,GCN及其变体不太适合我们的图。

因此,迫切需要开发基于边的图学习算法来分析大型全连通图数据。脑连接图的边缘代表了脑区之间功能连接的强度,在脑区之间的通信中具有重要的实际意义。除了直接连接的边缘,大脑区域之间的间接连接(通过其他大脑区域)也在大脑通信中发挥重要作用。所有这些直接和间接连接的边被定义为图论中的路径,我们开发了一种新的图路径卷积(GPC)方法来提取不同的图路径的特征。在GPC之后,采用边池化(E-P)和节点池化(N-P)对来自边和节点的数据进行下采样。因此,GPC,E-P和N-P是我们提出的模型的基本组成部分,即,脑连接图卷积网络(BC-GCN)。受ResNet和挤压与激励网络(SE Net)的启发,我们进一步提出将联合收割机Res块和SE块与GPC层结合,以强调数据的特征并增强有影响力的通道。具有GPC-Res层或GPC-SE层的模型分别称为BC-GCN-Res或BC-GCN-SE。在应用单一模型预测婴儿年龄时,我们还发现了一个值得注意的现象:中年组的预测误差普遍低于青年组和老年组。这表明,在婴儿期,大脑发育如此迅速,以至于单一模式很难描述不同年龄段的特征。因此,我们设计了一个两阶段的粗到精的框架,首先将受试者粗略地分为三个年龄组,然后通过特定于组的模型精细地预测准确的年龄。

通过采用BC-GCN-SE作为从粗到细框架中分类和预测任务的基本模型,我们可以大大提高性能。此外,我们为我们提出的图深度学习模型提出了一种特定的回溯方法。它采用梯度自动计算特征的重要性,从而揭示大脑功能连接与婴儿发育之间的关系。

总的来说,我们的贡献有三个方面。首先,为了聚合大脑区域之间的直接和间接连接的信息,我们设计了一种新的图路径卷积(GPC)方法,并开发了一个大脑连接图卷积网络(BC-GCN)作为基础模型。其次,我们提出了两个扩展模型BC-GCN-Res和BC-GCN-SE,包括Res块和SE块,进一步提高了基本模型的性能。第三,针对不同年龄组之间误差分布不均衡的问题,设计了一个由粗到精的两阶段框架,依次确定年龄组和预测年龄。通过对6至811天龄的婴儿rs-fMRI扫描进行测试,我们提出的模型的平均误差(MAE)为49.9天,显著优于最先进的模型。此外,预测功能连接可以通过专门设计的回溯方法发现,这有助于更好地了解婴儿大脑发育。值得注意的是,我们提出的BC-GCN系列模型可以应用于许多基于rs-fMRI的任务,因为它们非常通用。

2.Data and Pre-processing

我们使用了一个公共数据集,包括来自248名年龄从6到811天的典型发育婴儿受试者的612(256名男性和356名女性)rs-fMRI扫描。受试者人口统计学资料见表1。使用32通道头部线圈在3T Siemens Prisma MRI扫描仪上采集图像。采用TR/TE/TI = 2400/2.24/1600 ms、翻转角= 8°、采集矩阵=320 × 320和分辨率=0.8 × 0.8 × 0.8 mm获得的T1加权MR图像。TR/TE = 3200/564 ms,采集矩阵= 320 × 320,分辨率= 0.8 × 0.8 × 0.8 mm的T2加权MR图像。对于同一队列,在TR = 800 ms,TE = 37 ms,翻转角= 80°,FOV = 208 mm,分辨率= 2 × 2 × 2 mm,总体积= 420(5分47秒)的条件下采集rs-fMRI扫描。
表1 潜在人口统计学(D:日龄;年龄分布以平均值±标准差表示)
表1

所有功能性MRI扫描都是在婴儿特定程序后进行预处理的,包括以下主要步骤:(1)头部运动和空间失真校正;(2)基于组织边界图将功能性MRI扫描与其结构性MRI扫描对齐;(3)通过级联上述变换,在每个受试者的自然空间中一次性恢复fMRI数据,以避免多次插值和平滑功能信号;(4)使用保守高通滤波去除fMRI数据中的线性趋势;(5)使用独立分量分析将每个fMRI分解为150个分量;(6)基于深度学习模型去除噪声分量。排除了头部运动较大的扫描以进行进一步分析。预处理后,将fMRI时间序列与个体的物理空间(T1w)对齐,以建立结构图像和功能图像之间的对应关系。我们通过基于组织图将脑图谱包裹到每个扫描上,将脑体积划分为112个感兴趣区域(ROI)。对于每个ROI,平均时间序列被用作该ROI的代表时间序列用于网络构建。

3.Proposed method

我们提出的粗到细框架的流程图如图1所示,包括(步骤A)基于切片的动态功能连接矩阵的计算,(步骤B)年龄组分类,以及(步骤C)特定于组的年龄预测。具体来说,在步骤A中,输入是基于脑区域的序列rs-fMRI数据,即血氧水平依赖(BOLD)信号,我们利用具有恒定步幅的滑动窗口将序列沿时间轴沿着切割成几个小切片。对于每个切片,我们采用FSLNets来计算Pearson相关矩阵,该矩阵表征了大脑区域之间的连接特性。这些矩阵,也称为动态功能连接(DFC)矩阵,定义了大脑区域的短时功能图,也是以下步骤B和C的输入。步骤B和C分别是粗加工阶段和精加工阶段。在这两个阶段中,核心模型是我们提出的新的图路径卷积(GPC)方法,它聚合了大脑区域之间的直接和间接连接的信息,并相应地设计了大脑连接图卷积网络(BC-GCN)。然后,我们将Res块和SE块合并为两个扩展模型,即,BC-GCN-Res和BC-GCN-SE,强调数据的特性,增强影响力渠道。我们在步骤B和C中使用BC-GCN-SE。步骤B为粗测阶段,将受试者分为青、中、老三个年龄组。基于BC-GCN-SE的分类模型返回每个切片的分类结果。然后,通过平均所有归属矩阵的分类分数,每个对象可以被分类到特定的年龄组。它确定在步骤C中选择的模型,这是精细阶段。在给定年龄组的情况下,我们选择特定于组的模型来预测每个切片相关矩阵的年龄,并通过平均得到最终的预测对象。
图1
图1 我们提出的框架的一般流程图。输入是婴儿在没有任何明确任务参与的情况下自然休息时的血氧水平依赖(BOLD)信号,输出是每个婴儿的预测年龄。整个过程包括三个步骤。步骤A(数据处理)使用FSLNets工具和具有重叠的滑动窗口计算每个受试者的动态脑连接矩阵,步骤B(粗略阶段)利用分类模型确定受试者的年龄组(年轻、中间或老年),步骤C(精细阶段)通过基于步骤B中分类的年龄组选择的回归模型(Young_M、Middle_M或Old_M)预测年龄。步骤B和步骤C中的所有模型都使用步骤A中的连接矩阵作为输入。

在接下来的章节中,我们将首先介绍我们提出的脑连接图卷积网络(BC-GCN)及其扩展版本BC-GCN-Res和BC-GCN-SE,然后阐述我们的两阶段粗到细框架的策略,最后推导出所提出算法的回溯公式。

A. 脑连接图卷积网络(BC-GCN)

1)脑连接的图结构:

一个图可以表示为G=(N,E),其中N是节点的集合,E是边的集合。通过将大脑区域视为节点,将其连接视为边,可以将大脑连接视为图。一般来说,对于稀疏图,只有很少的节点由边连接。但在大脑连接中,节点是完全连接的。如果我们将n设为节点数,则边数为 n 2 {{n}^{2}} n2,即, ∣ N ∣ = n \left| N \right|=n N=n ∣ E ∣ = n 2 \left| E \right|={{n}^{2}} E=n2。如上所述,图卷积网络(GCN)是一种基于节点的深度学习方法,它学习从节点到节点的消息传递。GCN更关注节点及其特征,主要用于稀疏图,而大脑连通性本质上是具有边相关特征的全连通图。因此,GCN不适合用于大脑连接。

因此,我们设计了一个基于边的图网络算法,专门用于全连接的大脑连接,称为大脑连接图卷积网络(BC-GCN)。BC-GCN模型由三个基本层组成,图路径卷积(GPC)、边池(E-P)和节点池(N-P)。采用广义预测控制方法提取边缘特征。GPC之后,使用E-P和N-P从边缘和节点对数据进行下采样以获得输出特征。除了这三个基本层之外,还提出了两种结构Res块和SE块,它们可以将GPC层扩展到GPC-Res或GPC-SE,并将在第III-B节中详细描述。图2示出了BC-GCN-SE(BC-GCN的高级版本)的图示,其中GPC层被GPC-SE层替换。
图2
图2 拟议的BC-GCN-SE模型的图示。输入是一个类似图形的大脑连接数据,其中节点表示大脑区域,边缘表示功能连接。首先,三个GPC-SE层提取边缘上的特征,并且在虚线框中可视化真实的数据变化。然后E-P将数据从边池到节点,只留下节点结构,N-P将数据池在边上以获得单个输出。请注意,这个单一输出实际上是一个通道数维度向量,并且需要一个完全连接的层来进行最终预测。

2)图路径卷积(GPC):

在人类大脑中,大脑区域之间的关系是复杂和多层次的。脑区之间的直接联系和间接联系在脑信息交流中都起着重要作用。例如,脑区i和脑区j之间的通信不仅具有连接 i-j,而且具有间接连接,例如,通过另一个大脑区域k的连接 i-k-j。虽然大脑区域 i和 j 之间的直接联系可能很弱,但它们仍然可以通过路径 i-k-j 相互联系。所有这些直接和间接的连接都是大脑区域之间通信的基础。
图3
图3 BC-GCN中三个基本层的示意图。 (a) 通过图路径卷积(GPC)聚合来自不同阶路径的信息。 (b)从边到节点的数据池化(Edge Pooling,简称E-P)。 © 从孤立节点到单个输出的数据池化(Node Pooling,简称N-P)。

路径由 i − j 或 i − k − j 在图论中被定义为“路径”,表示两个节点之间的直接或间接连接。如图3(a)所示,我们将直接连接定义为0阶路径,将仅通过一个其他节点的间接连接定义为1阶路径,并以此类推定义为2阶路径和3阶路径。这些路径的缩写为 P i , j 0 P_{i,j}^{0} Pi,j0 P i , j 1 P_{i,j}^{1} Pi,j1 P i , j 2 P_{i,j}^{2} Pi,j2 P i , j 3 P_{i,j}^{3} Pi,j3。实际上, P i , j ∗ P_{i,j}^{*} Pi,j是等于其组成边之和的标量,例如, P i , j 0 P_{i,j}^{0} Pi,j0是边 E i , j E_{i,j} Ei,j P i , j 1 P_{i,j}^{1} Pi,j1 E i , k E_{i,k} Ei,k E k , j E_{k,j} Ek,j之和。如前所述,这些路径可能包含有关大脑区域之间关系的重要信息。为了从这些路径中聚合多阶信息,我们提出了图路径卷积(GPC):
公式·
其中 P i , j s , k P_{i,j}^{s,k} Pi,js,k表示节点 i 和节点 j 之间的第 k 个 s 阶路径, G P i , j GP_{i,j} GPi,j是 i 和 j 之间所有路径的聚合。 S 限制路径的最高阶, ∣ P i , j s , ∗ ∣ \left| P_{i,j}^{s,*} \right| Pi,js, 是 s 阶路径的数量。 ws,k 和 θs 是可学习参数,即 ws,k 是第 k 个 s 阶路径的权重,θs 是 s 阶路径的权重。 GPC 可以将数据从 0 阶路径聚合到 S 阶路径,并从这些路径中提取有意义的特征。

等式1是GPC的基本公式,在BC-GCN模型中起到提取特征的作用。深度学习方法通​​常通过堆叠基本层来扩大感受野并提高其性能。通过将 G P i , j GP_{i,j} GPi,j 设置为下一层的 0 阶路径 P i , j 0 P_{i,j}^{0} Pi,j0,我们还可以制作逐层 GPC,并且可以像基本层一样重复。用上标l表示第l层数据,分层GPC可以表示为:
公式2
其中 P i , j s , k , l P_{i,j}^{s,k,l} Pi,js,k,l 表示第 l 层数据的节点 i 和节点 j 之间的第 k 个 s 阶路径, P i , j 0 , l + 1 P_{i,j}^{0,l+1} Pi,j0,l+1 表示(l 的节点 i 和节点 j 之间的 0 阶路径)具体来说第l+1层。

3)边缘池化(E-P)和节点池化(N-P):

GPC可以在不改变数据图结构的情况下有效地提取特征。池化是减少数据大小同时保留有用信息的重要层。因此,在GPC之后,采用边缘池化(E-P)和节点池化(N-P)来聚合来自边缘和节点的数据。采用与 BrainNetCNN 中 E2N 层和 N2G 层相同的方法,E-P 将数据从边缘聚合到中心节点(N),如图 3(b)所示,N-P 将所有节点数据聚集在一起(图3©),生成最终的单个输出来表示整个图 (G​​)。这两层在聚合过程中都需要可学习的参数。从数学上来说,它们的定义如下:
公式3、4
公式(3) 公式(4)
请注意,虽然我们使用相同的字母 w k w_{k} wk 来表示 GPC、E-P 和 N-P 中的可学习参数,但它们彼此独立且不共享权重。 GPC、E-P和N-P依次拼接在一起,如图2所示,其中GPC可以重复多次(本工作中为3次)。全连接层用于从通道维度向量获取最终输出。通过改变最后一个全连接层的输出维度和激活函数,所提出的模型可以是分类器或预测器。

B. 扩展结构

受CNN扩展模块的启发,我们提出了两种扩展结构,通过包含Res块和SE(Squeezeand-Exitation)块来强调数据的特征并增强有影响力的通道。

1)ResBlock:

ResNet通过在卷积层之间添加残差结构来强调数据本身的特征,并取得了良好的效果。在我们的GPC中,由于每条边都可以从前一层的2×n条边收集信息,因此在一定程度上忽略了边本身的影响。受到 ResNet 的启发,我们定义了 Res 块:
公式
公式(5)
其中u是一个可学习的参数,用于自适应变换边缘本身,R表示Res块的结果,其数据大小与边缘E相同。Res块与GPC结合使用,称为GPC-Res:
公式
公式(6)
其中 f G P C f_{GPC} fGPC f R e s f_{Res} fRes 是GPC层和Res块的缩写表示,O是GPC-Res的输出。 Res块的加入可以使GPC层更加灵活,带有Res块的基本模型BC-GCN称为BC-GCN-Res。

2)SEBlock:

受到另一个CNN模型Squeeze-andExitation Network(SE Net)的启发,我们建议通过包含SE块学习的通道注意层来扩展BC-GCN模型,称为BC-GCN-SE。 SE 块的设计与原始 SE 网络类似,但卷积按照上面讨论的 GPC 进行了更改。经过GPC后,我们可以通过全局平均池化得到通道数维度的向量。

在我们的 BC-GCN-SE 模型中,SE 块和 Res 块都与 GPC 层结合,称为 GPC-SE,如图 2 所示。

C. 两阶段从粗到细的框架

在婴儿年龄预测中,有一个值得注意的现象,即中年组的预测误差普遍较低,而青年组和老年组的预测误差较高。我们在图6(a)中绘制了几种不同方法的预测误差曲线,所有这些曲线都遵循“高-低-高”分布。这种“高-低-高”现象是因为婴儿大脑发育的异质性,单一的回归方法不能很好地代表其时间差异和纵向个体间差异。因此,受[39]的启发,我们提出了一个两阶段从粗到细的框架,如图1所示。通过将年龄范围划分为三个年龄组(即年轻、中年和老年),模型首先对年龄组进行分类,然后使用相应组的预测模型来预测年龄。这样,不同的预测模型就可以捕捉不同年龄段的特征,避免性能下降。在我们的实验中,我们将这三个组的数据大小设置得相似,以平衡三个相应的预测模型,即三个年龄组的受试者数量相似。

然而,年龄是一个连续变量,而不是离散类别。第一阶段的分类误差会在一定程度上影响最终的结果。根据我们的实验和观察,在第一阶段,被试有很大的概率被误分到其相邻年龄组(即年轻组的被试只能被误分到中间组,详情见表四) )。鉴于此,我们调整了三个特定组预测模型的训练数据,并确保也可以包含来自相邻组的一些数据。因此,即使错误发生在第一阶段,预测模型仍然可以做出合理的估计,因为它在训练集中看到了类似的样本。例如,对于老年组的预测模型,训练数据既包括中年组的后半部分,也包括整个老年组的受试者。重组训练策略如图4所示。
图4
图4 三个预测网络的跨组训练策略。覆盖部分相邻数据集的训练集可以减少粗略阶段的分类误差对精细阶段预测的影响。

D.回溯

除了准确预测年龄外,探索年龄与大脑区域之间的关系,即预测模型的输出和输入也非常重要,因为它可以揭示发育中的大脑的生理变化。以前分析特征重要性的方法只能应用于传统的机器学习方法(如计算决策树的信息散度)或CNN(如CAM或Grad-CAM),而不适用于GCN,因为它们会导致到不对称连接矩阵,这违反了图模型的定义。换句话说,那些回溯方法无法正确学习 GCN 模型的特征重要性。因此,基于所提出的模型,我们设计了一种新的回溯算法,使我们能够识别每个大脑功能连接对最终结果的影响。

流程如下。首先,保存一个训练有素的模型并对每个主题进行预测。然后,不使用真实年龄,而是将目标年龄的标签设置为大于预测年龄的值,并用于计算预测年龄的损失。具体来说,我们将标签设置为预测年龄加一天,因此实际上每个输出的计算损失为 1。最后,我们可以计算x,它实际上意味着如果受试者变老一天,大脑连接将如何变化。

然而,从输入得到的x是不对称的,这与对称输入连接矩阵相矛盾。这是因为连接矩阵对称位置的数据,即实际上是同一条边,在经过GPC、E-P、N-P时,流向不同。为了便于说明,我们在图 5 中展示了一个简单的示例,其中输入图只有三个节点 i、j 和 k。
图5
图5 GPC、E-P 和 N-P 的图表形式和矩阵形式的图示。他们表明,即使它们代表相同的边,Eij 和 Eji 在模型中经过不同的路径,这使得它们的梯度不同。因此,我们应该将Eij和Eji视为边缘的两个流,并使用多流BP算法来计算其真实梯度。

4.Experimental Results

在我们的420个时间点的功能性MRI扫描中,我们采用了50个点的滑动窗口和37个点的步幅,将其切割成11个切片并分别计算它们的连接矩阵。所有切片的这些相关矩阵被视为所有比较模型的输入样本。在测试中,我们对每个切片的分类或预测结果进行平均,得到这次 MRI 扫描的结果,而受试者的最终年龄预测结果是他在同一年龄的所有扫描(PA、AP 或重新测试)的平均值。我们采用 10 倍交叉验证策略进行模型评估。为了防止信息泄露,测试集中的受试者与训练集中的受试者完全不同。此外,通过分层交叉验证,训练集和测试集的年龄分布保持相似,以确保模型的可靠性。我们的从粗到细的框架中有四种模型,包括一种粗阶段分类模型和三种细阶段预测模型。在每一次训练中,我们首先用训练集训练分类模型。然后,通过固定训练有素的分类模型,我们进一步根据受试者的年龄组分别训练了三个预测模型。所有模型均使用相同的设置进行训练,包括动量为 0.9、批量大小为 64、学习率为 0.001 的 SGD 优化器。分类模型训练20次,每次30个epoch,预测模型训练20次,每次20个epoch。我们使用L1作为损失函数,并计算平均绝对误差(MAE)和皮尔逊相关系数来评估每种方法的性能。

表2 不同方法预测模型性能
表2
表3 预测模型第一年科目表现
表3

A. BC-GCN模型消融研究

我们首先测试我们提出的 BC-GCN 的回归性能,并将其与其他相关方法进行比较。在这个实验中,输入是切片 rs-fMRI 数据的连接矩阵,输出是每个受试者的预测年龄。 BC-GCN、BC-GCN-Res 和 BC-GCN-SE 具有第三节A中描述的结构。为了与 BrainNetCNN进行公平比较,我们采用了他们提出的神经网络结构,并通过添加 Res 和 SE 块将其扩展为 BrainNetCNN-Res 和 BrainNetCNN-SE。

本实验中的方法包括BrainNetCNN系列和BC-GCN系列。 BC-GCN、BC-GCN-Res和BC-GCN-SE都具有相同的结构,即3个16通道GPC层、1个64通道E-P层和1个256通道N-P层。请注意,BC-GCN-Res 和 BCGCN-SE 中的 GPC 层是 GPC-Res 和 GPC-SE 分开的。 BrainNetCNN设置为3个16通道E2E层、1个64通道E2N层和1个256通道N2G层的类似结构,并且将Res块或SE块添加到E2E层中以形成BrainNetCNN-Res或BrainNetCNN- SE。为了公平比较,我们对 BrainNetCNN 进行了仔细的微调,并根据其在我们数据集上的最佳设置报告了其结果。 ReLU 激活函数用于任何相邻层之间。每种方法的结果示于表2中。

除了对整个数据集进行实验外,我们还进一步进行了与婴儿从出生到一岁的比较,因为第一年是一生中最重要的发育阶段。实验设置与上面相同。年龄预测相应的MAE如表3所示。

根据表2和表3,Res块和SE块可以明显提高精度,尤其是在BC-GCN中。而且BC-GCN系列比BrainNetCNN系列有更好的性能。总的来说,无论受试者的年龄范围如何,BC-GCN-SE 的表现最好。因此,我们使用BC-GCN-SE模型进行以下实验。
图6
图6 不同方法和所提出的从粗到细过程的年龄误差曲线。

B. 从粗到细的预测框架

基于上一小节的实验,我们展示了几种模型随年龄的预测误差曲线,如图6(a)所示。所有模型在中年组中效果良好,但在青年组和​​老年组中效果较差,呈现出“高-低-高”的年龄误差曲线。它验证了我们的假设,即不同年龄范围的大脑连接发展模式是不同的,并且单一的预测模型不能很好地模拟异质性。正如第三节C中所讨论的,我们将年龄<200天设为年轻,200-400天设为中年,年龄>400天设为老年,并测试从粗到细的框架提高预测精度的能力。

为了验证分类的可行性,我们利用预测任务中最好的模型BC-GCN-SE,将其转化为分类器。具体来说,经过softmax函数后,分类器输出为1×3作为年龄组。为了使实验更加合理,我们从训练集中取出10%的数据作为验证数据。分类结果如表4所示。
表4 BC-GCN-SE分类器的分类结果,包括验证集和测试集的准确率以及不同情况下的错误率
表4
现在,我们有一个模型作为分类器来识别年龄范围,并有三个特定于年龄组的模型来预测婴儿年龄。在接下来的实验中,我们对所有四个模型都采用相同的结构BC-GCN-SE,但参数不同。这四个模型分别使用不同的训练集进行训练。实验结果如表5和图6(b)所示。在图6(b)中,我们显示了预测误差的比较图。通过两阶段从粗到精的预测框架,年轻期和老年期的误差显着减少。中年组的误差略有增加,这是因为即使我们的中间预测模型是由整个数据集训练的(如图4所示),这使其与原始模型等效,但某些中年受试者可能会错误地分类为年轻或老年,并被错误的模型预测,使得它比中间模型(等于原始模型)的预测更糟糕。但年轻人和老年人的进步如此巨大,从粗到精框架的总性能仍然很出色。
表5 三个年龄段的实验结果(MAE)和总体结果.CF:从粗到细的框架
表5
表5显示了不同年龄范围的预测误差和总体结果。显然,单一的BC-GCNSE模型并不能在所有年龄段都表现良好,而BCGCN-SE具有从粗到细的框架,在不同年龄段之间取得了平衡,并且大大提高了年轻组(<200)和老年组的结果组(>400)。为了进一步验证从粗到精模型的有效性,我们实现了一种更深的模型BC-GCN-SE-Deep,它多了一层GPC。然而,它的结果是所有三个模型中最差的,表明更深的模型无济于事。

此外,为了评估年龄组之间数据不平衡的影响,我们设计了一个额外的实验,其中数据被平均分为三组:<248天(83名受试者),200 - 400天(83名受试者)和>394天(82名受试者)。我们比较了这两种不同训练数据划分方法的年龄预测误差,并在表6中显示。他们的结果只有细微的差别。这表明训练对象组的轻微数据不平衡对最终结果的影响非常有限。只要我们对不同年龄组采用不同的模型,并采用适当的由粗到细的框架,结果就可以得到明显的改善。由于不平衡数据划分策略具有更好的性能,我们将在下面的实验中使用此设置。
表6 三个相同和不同年龄组的MAE实验结果。CF:由粗到细的框架
表6
此外,我们在BrainNetCNN系列模型和BC-GCN系列模型上测试了粗到细框架的性能,如表7所示。在所有的实验中,由粗到细的框架与原始模型相比显示出显著的改进(每个模型改进超过10天),这进一步证明了其有效性和普适性。我们认为这是一个强大的方法,可以更广泛地用于其他应用。
表7 用MAE对不同模型的粗-细框架实验CF:由粗到细的框架
表7

C.与最先进方法的比较

表8 与最先进的方法进行比较。Cf:从粗略到精细的框架。M=106
表8
图7
图7 最新方法在MAE方面的误差线,20倍10倍交叉验证实验。

D.预测连接映射

图8
图8 分别代表三个年龄组的三个预测模型(Young_M、Medium_M和Old_M)计算的预测关联度。较厚的边缘表明对婴儿大脑发育的影响更大。

5.Conclusion and Future Work

本文提出了脑连接图卷积网络(BC-GCN)及其扩展版本BC-GCN-Res和BC-GCN-SE,用于分析基于rs-fMRI的功能连接网络,并将其应用于婴儿脑年龄的预测。此外,我们提出了一个两阶段的粗到细的框架,一个分类模型和三个组特定的预测模型(BC-GCN-SE与粗到细)。值得注意的是,这四个模型共享相同的网络结构,但参数不同。BC-GCN及其扩展模型显示出明显的优势,竞争的方法。由粗到细的框架进一步提高了性能,将预测误差降低到49.9天。在未来,我们将建议BC-GCN及其扩展模型应用到其他脑连接相关的问题。

  • 24
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值