DAY-2 矩阵的运算

矩阵的运算

学会矩阵的运算对于学习计算机的课程十分重要。

矩阵在人工神经网络中扮演着重要的角色。一张图片在计算机中用矩阵表示,通过对矩阵的运算来实现各种图像的操作。神经网络的权重和偏置通常表示为矩阵,通过矩阵乘法和激活函数的组合,可以实现神经网络的前向传播和反向传播。

	矩阵运算包括加法运算,减法运算,乘法运算,倒置,逆矩阵

下文所使用矩阵例子
A = [ a 11 a 12 . . . a 1 m a 21 a 22 . . . a 2 m . . . . . . . . . . . . a n 1 a n 2 . . . a n m ] A=\begin{bmatrix} a_{11}&a_{12} &...&a_{1m} \\ a_{21}&a_{22} &...&a_{2m} \\ ...& ... & ... &... \\ a_{n1}&a_{n2} &...&a_{nm} \end{bmatrix} A= a11a21...an1a12a22...an2............a1ma2m...anm

1. 加法运算

与普通的代数加法类似。行和列数相同的矩阵相加,把A,B矩阵内的对应元素的值相加,作为结果矩阵的值。
A + B = [ a 11 + b 11 a 12 + b 12 . . . a 1 m + b 1 m a 21 + b 21 a 22 + b 22 . . . a 2 m + b 2 m . . . . . . . . . . . . a n 1 + b n 1 a n 2 + b n 2 . . . a n m + b n m ] A+B=\begin{bmatrix} a_{11}+b_{11} &a_{12}+b_{12} &... &a_{1m}+b_{1m} \\ a_{21}+b_{21} &a_{22}+b_{22} &... &a_{2m}+b_{2m}\\ ... &... &... &... \\ a_{n1}+b_{n1} &a_{n2}+b_{n2} &... &a_{nm}+b_{nm} \end{bmatrix} A+B= a11+b11a21+b21...an1+bn1a12+b12a22+b22...an2+bn2............a1m+b1ma2m+b2m...anm+bnm

2. 减法运算

与矩阵加法类似,需要行列数相同。
A − B = [ a 11 − b 11 a 12 − b 12 . . . a 1 m − b 1 m a 21 − b 21 a 22 − b 22 . . . a 2 m − b 2 m . . . . . . . . . . . . a n 1 − b n 1 a n 2 − b n 2 . . . a n m − b n m ] A-B=\begin{bmatrix} a_{11}-b_{11} &a_{12}-b_{12} &... &a_{1m}-b_{1m} \\ a_{21}-b_{21} &a_{22}-b_{22} &... &a_{2m}-b_{2m}\\ ... &... &... &... \\ a_{n1}-b_{n1} &a_{n2}-b_{n2} &... &a_{nm}-b_{nm} \end{bmatrix} AB= a11b11a21b21...an1bn1a12b12a22b22...an2bn2............a1mb1ma2mb2m...anmbnm

3.乘法运算

分为一个常数与矩阵相乘的情况,和两个矩阵之间相乘的情况

常数与矩阵相乘
k ⋅ A = [ k ⋅ a 11 k ⋅ a 12 . . . k ⋅ a 1 m k ⋅ a 21 k ⋅ a 22 . . . k ⋅ a 2 m . . . . . . . . . . . . k ⋅ a n 1 k ⋅ a n 2 . . . k ⋅ a n m ] k\cdot A=\begin{bmatrix} k\cdot a_{11}&k\cdot a_{12} &...&k\cdot a_{1m} \\ k\cdot a_{21}&k\cdot a_{22} &...&k\cdot a_{2m} \\ ...& ... & ... &... \\ k\cdot a_{n1}&k\cdot a_{n2} &...&k\cdot a_{nm} \end{bmatrix} kA= ka11ka21...kan1ka12ka22...kan2............ka1mka2m...kanm

矩阵与矩阵相乘
给定两个矩阵A*B的运算。

A = [ a 11 a 12 a 13 a 21 a 22 a 23 ] A=\begin{bmatrix} a_{11}&a_{12}&a_{13} \\ a_{21}&a_{22}&a_{23}\\ \end{bmatrix} A=[a11a21a12a22a13a23]
B = [ b 11 b 12 b 21 b 22 b 31 b 32 ] B=\begin{bmatrix} b_{11}&b_{12} \\ b_{21}&b_{22}\\ b_{31}&b_{32} \end{bmatrix} B= b11b21b31b12b22b32

矩阵A,B需要满足A的列数等于B的行数

A ⋅ B = [ a 11 ⋅ b 11 + a 12 ⋅ b 21 a 11 ⋅ b 12 + a 12 ⋅ b 22 a 21 ⋅ b 11 + a 22 ⋅ b 21 a 21 ⋅ b 12 + a 22 ⋅ b 22 ] A\cdot B=\begin{bmatrix} a_{11}\cdot b_{11}+a_{12}\cdot b_{21} &a_{11}\cdot b_{12}+a_{12}\cdot b_{22} \\ a_{21}\cdot b_{11}+a_{22}\cdot b_{21} &a_{21}\cdot b_{12}+a_{22}\cdot b_{22} \\ \end{bmatrix} AB=[a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22]

A ⋅ B = [ a 11 ⋅ b 11 + a 12 ⋅ b 21 + a 13 ⋅ b 31 a 11 ⋅ b 12 + a 12 ⋅ b 22 + a 13 ⋅ b 32 a 21 ⋅ b 21 + a 22 ⋅ b 21 + a 23 ⋅ b 31 a 21 ⋅ b 22 + a 22 ⋅ b 22 + a 23 ⋅ b 32 ] A\cdot B=\begin{bmatrix} a_{11}\cdot b_{11}+a_{12}\cdot b_{21}+a_{13}\cdot b_{31} & a_{11}\cdot b_{12}+a_{12}\cdot b_{22}+a_{13}\cdot b_{32} \\ a_{21}\cdot b_{21}+a_{22}\cdot b_{21}+a_{23}\cdot b_{31} & a_{21}\cdot b_{22}+a_{22}\cdot b_{22}+a_{23}\cdot b_{32}\\ \end{bmatrix} AB=[a11b11+a12b21+a13b31a21b21+a22b21+a23b31a11b12+a12b22+a13b32a21b22+a22b22+a23b32]

矩阵乘法不满足交换律,但是满足分配率和结合律

4.矩阵的转置

例如一个具体的矩阵A为
A = [ a 11 a 12 a 13 a 21 a 22 a 23 ] A=\begin{bmatrix} a_{11}&a_{12}&a_{13} \\ a_{21}&a_{22}&a_{23}\\ \end{bmatrix} A=[a11a21a12a22a13a23]
则他的转置矩阵为
A T = [ a 11 a 21 a 12 a 22 a 13 a 23 ] A^{T} =\begin{bmatrix} a_{11}&a_{21} \\ a_{12}&a_{22}\\ a_{13}&a_{23} \end{bmatrix} AT= a11a12a13a21a22a23

5.矩阵的逆运算

首先需要知道单位矩阵的概念

是对角线上的元素为1,除了对角线上以外的元素都为零。

E = [ 1 0 . . . 0 0 1 . . . 0 . . . . . . . . . . . . 0 0 . . . 1 ] E =\begin{bmatrix} 1&0&...&0 \\ 0&1&...&0 \\ ...&...&...&... \\ 0&0&...&1 \\ \end{bmatrix} E= 10...001...0............00...1
A ⋅ A − 1 = E A\cdot A^{-1} =E AA1=E

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值