动态规划与贪心算法

最优子结构:如果一个问题的最优解包含其子问题的最优解,则称该问题有最优子结构性质。是否具有最优子结构性质是使用动态规划与贪心算法的前提。

动态规划(状态转移方程)

要素:最优子结构、子问题重叠

方法:

1、自底向上:通过恰当定义子问题的规模,使得子问题的求解只依赖于更小问题的求解。因而可以将子问题按规模从小到大顺序求解。

2、带备忘的自顶向下:按自然递归的形式编写过程,但过程中会保存每一个子问题的解。当需要一个子问题的解时,先检查是否已经保存了此解,从而节省了重复子问题的求解时间。

关键:找到状态转移方程,即找到当前问题的解与子问题的解之间存在的关系,是否能够构成递归表达式。

贪心选择性质:通过局部最优选择构造全局最优,即进行选择时,我们做出的是当前问题中看来最优的选择,而不必考虑子问题的解。

贪心算法(逐步逼近)

要素:最优子结构、贪心选择性质

两者的区别

贪心算法本质是动态规划的优化。

动态规划每一步骤都要进行选择,而选择通常依赖于子问题的解。

贪心算法进行选择时可能依赖之前的做出的决定,但不依赖于任何将来的选择或者子问题的解。

0-1背包问题与分数背包问题 

  • 0-1背包问题:我们有一堆物品S={a1,a2,...,an},每一个物品ai都有一个重量wi和一个价值vi.现在有一个背包,这个背包的容量为W,现在要将这些物品在不超出背包容量的情况下选择性的放入背包,使得背包里面物品的价值最大,物品不能只选取其中一部分,必须选择整个,或者不选!

  • 分数背包问题:这个问题和上面的问题比较相似,唯一不同的就是该问题里面的物品可以进行分割,即可以只选取一个物品ai的一部分

对于上述两个问题都具有最优化子结构,很明显0-1背包问题贪心算法不可靠,动态规划才是有效的;分数背包贪心算法是有效的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

คิดถึง643

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值