Python实战:不会写提示词,别怪AI答非所问!提示词prompt最强指南来了!纯干货分享!

img

一、提示词工程prompt简介

提示词(Prompt) 是用户向 AI 提供的输入指令或问题,它直接影响 AI 的理解和输出结果。提示词的作用类似于“引导信息”,它决定了 AI 生成内容的方向、风格和详细程度。

img

提示词的类型

1.简单指令型

  • 例子:“写一篇关于人工智能的短文。”
  • 适用于基础任务,但可能缺乏精准度。

2.结构化提示

  • 例子:“用简洁的语言总结一下人工智能的核心概念,不超过50字。”
  • 通过增加限制条件,使输出更符合需求。

3.示例引导型

  • 例子:“以下是一个产品评价示例:‘这款耳机音质很好,续航也很强’。请根据这个示例撰写一个关于智能手表的评价。”
  • 通过示例提供参考,提高 AI 生成的准确性和一致性。

4.角色扮演型

  • 例子:“你是一个经验丰富的金融分析师,请分析当前股市走势,并提供投资建议。”
  • 让 AI 以特定身份回答,增强专业性。

提示词工程师岗位的薪资待遇

image-20250330161603120

二、提示词学习内容分享

(1)学习内容的大纲
  1. 两个关键的提示词原则
  • 给模型一些时间思考

  • 清晰明确的指示

  1. 迭代式提示词开发

  2. 如何制定适合应用的提示词

  3. 介绍了大模型有用的功能:总结、推理、转换、扩展

  4. 自定义聊天机器人

(2)学习
1.第一原则:给模型清晰明确的提示

提示词一定要写的清晰明了,不要含有歧义,否则大模型理解起来会产生幻觉,不能按照你最期望的结果输出。

img

这里有一些例子,比如总结一篇长文;要求大模型输出json格式的结果;要求大模型通过自己判断,继续或停止任务;提供少量的训练提示。

img

这其中前两个提示词没什么可解释的。第三个要求大模型通过自己判断,继续或停止任务,我来解释一下,先让大模型判断,然后根据判断进行输出。举个例子,这里2篇文字,一个是西红柿炒鸡蛋的教程,另一个是小学生公园散步的日记。提示词这么写“如果文本中有明显的步骤,则输出第一步、第二步、第三步,如果没有明显的步骤,则输出这是一篇没有明显步骤的文字。大模型在分析这2篇文本的时候就会自己先进行判断,然后根据判断结果再进行输出。

img

img

第四个提供少量的训练提示,其实就是给大模型一个案例,让它参照案例进行分析和输出。

img

2.第二原则:给模型思考的时间

提示词可以给大模型指定完成任务所需的步骤,比如第一步干什么、第二步干什么,这样的输出结果会是最稳妥的。

img

在模型匆忙做出结论之前思考解决方案。这里有一个很有意思的例子,内容是给了一道工程题,然后给出了一个学生的计算过程和结果。如果我们提示词这么写:判断学生的解答是否正确。那么大模型会匆匆把过程看一遍,先回答解答是否正确,这个时候它没有依据只能瞎蒙,所以它会随机输出正确或者错误。然后自己再算一遍,发现学生是错的。但是它已经先输出了学生的答案是正确的。如果在商业应用中出现这样的错误,是会造成损失的。

img

3.模型的局限性——幻觉

我们要求大模型介绍一款牙刷公司没有生成的一款牙刷,模型从牙刷公司中创造了一个虚构的产品描述输出给我们。避免幻觉的方式之一是从文本中找到相关的引用或数据支撑。

img

4.迭代提示词

我们可以通过不断迭代提示词,让大模型针对相同的文本,输出不同的结果提供给不同需求的用户。 比如我们可以将一段椅子的产品描述,要求大模型,输出给零售商、终端客户,它都会提供不同的结果,甚至可以直接输出html格式。 值得注意的是,大模型默认输出markdown格式。 下面我们演示一个大模型输出不同结果的例子。

img

img

5.摘要

这里说的是通过大模型总结各类文本、评论等等,通过改变提示词,将不同的文本总结成不同的结果提供给不同的客户。 例如,一段普通的文字,总结给财务总监、技术总监、人力总监,都将会是不同的侧重点。

img

6.情感推理

让大模型判断文本中的情绪。这可以应用在智能客服、判断产品评价等商业用途中。让大模型判断用户评价的情感是正面还是负面。

img

img

7.自然语言提取

大模型擅长从自然语言中提取你想了解的内容。比如从产品反馈中提取到客户的情感和产品的名称,输出成json格式,就可以直接用python语言处理这样的结果。

img

img

利用大模型帮我们总结海量的文本,提取出关联性最高的几个主题,然后将这样的形式存储起来 在查询的时候就很容易根据语义分析找到最接近用户语义的回答。

img

img

8.扩展

根据少量的文本,扩展成长文。这在企业应用中,可以用来回复客户Email,制作AI客服机器人。

img

9.Temperature 通过修改温度改变模型响应的多样性

DeepSeek的temperature的参数值与ChatGPT稍有不同。DeepSeek平台关于Temperature的解释如下:

img

我们可以通过调整Temperature的参数值大小,应用在不同的场景中,以获得不同的结果。

10.构建聊天机器人

在聊天模式中,每次调用messages时是独立的,因此我在message1中告诉AI我的名字,它无法在message2中还记得我的名字。

img

我们只有通过上下文增加大模型的记忆。

img

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值