tju-大物2B笔记-第九章

这是我第一篇博客,对于学大物同学们应该会有些帮助,写的不好还请见谅。

物理课笔记第一章-简谐振动

9.1.1-简谐振动方程

第一部分:公式

首先,简谐振动可以用一个弹簧振子来表示
在这里插入图片描述

k:弹簧劲度系数
F:小物块受力
x:小物块位移

9.1.1.01

F = m a F=ma F=ma

9.1.1.02

F = − k x F=-kx F=kx

9.1.1.03

− k x = m d 2 x d t 2 -kx=m\frac{d^2 x}{dt^2} kx=mdt2d2x
由上式可得

9.1.1

d 2 x d t 2 + k m x = 0 {d^2x \over dt^2}+{k \over m}x=0 dt2d2x+mkx=0

为求解上式子,将k/m 用 w^2代替,即

w 0 = k m w_0= \sqrt{k \over m} w0=mk
d 2 x d t 2 + w 2 x = 0 {d^2x \over dt^2}+w^2x=0 dt2d2x+w2x=0

通常称w_o为简谐振子的角频率,固有频率 或简谐振动的圆频率
求得结果为

9.1.2

x = A c o s ( w 0 t + φ ) x=Acos(w_0t+φ) x=Acos(w0t+φ)

由其推导可得:

9.1.3

v ( 速度 ) = d x d t = − A w 0 s i n ( w 0 t + φ ) = A w 0 c o s ( w 0 t + φ + π 2 ) v(速度)={dx \over dt}=-Aw_0sin(w_0t+φ)=Aw_0cos(w_0t+φ+{π \over 2}) v(速度)=dtdx=Aw0sin(w0t+φ)=Aw0cos(w0t+φ+2π)

9.1.4

a ( 加速度 ) = d 2 x d t 2 = − A w 0 2 c o s ( w 0 t + φ ) = − w 0 2 x a(加速度)={d^2x \over dt^2}=-Aw_0^2cos(w_0t+φ)=-w_0^2x a(加速度)=dt2d2x=Aw02cos(w0t+φ)=w02x

其中,A== 振幅 w o ∗ t + φ = = 相位 w_o*t+φ ==相位 wot+φ==相位,当t==0 -->初相位

9.1.2-描述简谐振动特征的物理量

一:各个物理量及其含义

  1. 振幅 A
    振幅是描述振动物体离开平衡位置的最大位移,反映振动强弱程度 单位m(米)
  2. 角频率 W(单位 rad/s ==弧度每秒)
    一般情况下,角频率用w表示 角频率—》物体振动快慢程度和周期性
    w↑↑—>振动越快
  3. 频率 (/s 每秒= = 赫兹)v&&周期T(s 秒)
    上述振动快慢和周期性也可以用v(频率)来表示 v(频率)= =物体1s振动几周期,T==物体振动一次需要时间
9.1.5

w = 2 π v (频率) = 2 π T w=2πv(频率)={2π \over T} w=2πv(频率)=T2π
振动系统做自由振动时,都是以振动系统的固有角频率 w_0 (或 固有频率v_0 固有周期T_0)振动 任何振动系统都有决定振动系统本身性质的固有角频率 w_0 (它可以由9.1.1 得出)
由于上文中(9.1.1.)

9.1.6

w o = k m w_o= \sqrt{k \over m} wo=mk

可得

9.1.7

v o (频率) = 1 2 π k m v_o(频率)={1 \over 2π}\sqrt {k \over m} vo(频率)=2π1mk

9.1.8

T o = 2 π m k T_o=2π\sqrt {m \over k} To=2πkm

3.相位 w o ∗ t + φ (弧度), t = = 0 − − − 》初相位 w_o*t+φ(弧度),t==0---》初相位 wot+φ(弧度),t==0》初相位
相位是相对的,重要的是相位差的概念—》比较9.1.2和9.1.3 9.1.4 可知,做简谐运动的物体速度超前其位移π/2 相位 而加速度与位移反相位 所以–》角频率可以理解为相位的时间变化率,w↑则相位随时间变化越快 因而物体振动越快 相位每变化2π 物体做一次全振动
当把t=0代入时

x 0 = A c o s φ x_0=Acosφ x0=Acosφ
v 0 (速度) = − w 0 A s i n φ v_0(速度)=-w_0Asinφ v0(速度)=w0Asinφ
由上式

9.1.9

A = ( x 0 2 + ( v 0 w 0 ) 2 ) A=\sqrt{ (x_0^2+({v_0 \over w_0})^2)} A=(x02+(w0v0)2)

9.1.10

t a n φ = − v 0 (速度)) w 0 x 0 tanφ=-{v_0 (速度))\over w_0x_0} tanφ=w0x0v0(速度))
##9.1.3 简谐振动的图示法–旋转矢量法

在这里插入图片描述
在这里插入图片描述

逆时针为正弧度数,用下文的例题作为讲解(后来发现这个例题其实不旋转矢量就能写,我也不知道怎么描述这个了,有问题问问老师吧)
##多弹簧连一起(…是弹簧的,,,样子?)
------k1— + —k2 -----=newk=k1* k2/(k1+k2)

例题部分

在这里插入图片描述

(1)
首先设弹簧k1形变量为x1;弹簧k2形变为x2 弹簧位置坐标为x
则有
x = x 1 + x 2 x=x_1+x_2 x=x1+x2
忽略弹簧重量并对弹簧进行受力分析可知:
k 1 x 1 = k 2 x 2 k_1x_1=k_2x_2 k1x1=k2x2
将两个弹簧视为一个弹簧其等效劲度系数为k
则有
k x = k 1 x 1 = k 2 x 2 kx=k_1x_1=k_2x_2 kx=k1x1=k2x2
以上三个式子联立可得
k = k 1 k 2 k 1 + k 2 = 1 0 3 ( N / m ) k={k_1k_2 \over k_1+k_2}=10^3 (N/m) k=k1+k2k1k2=103(N/m)
(2)
设物块运动表达式为

x = A c o s ( w 0 t + φ ) x=Acos(w_0t+φ) x=Acosw0t+φ)
式中
w 0 = k m = 100 ( r a d / s ) w_0=\sqrt {k \over m}=100(rad/s) w0=mk =100(rad/s)
A = ( x 0 2 + ( v 0 ( 速度 ) w 0 ) 2 ) = 5 c m A=\sqrt{(x_0^2+ ({v_0(速度) \over w_0})^2)}=5cm A=(x02+(w0v0(速度))2) =5cm
φ = a r c t a n ( − v 0 w 0 x 0 ) = 0.64 r a d φ=arctan(-{v_0 \over w_0x_0})=0.64rad φ=arctan(w0x0v0)=0.64rad
<此处进行度数和弧度数的转换>注:1°={π \over 180°}
所以可得
x = 5 c o s ( 100 t − 0.64 ) x=5cos(100t-0.64) x=5cos(100t0.64)
因为
v (速度) = − 500 s i n ( 100 t − 0.64 ) c m / s v(速度)=-500sin(100t-0.64)cm/s v(速度)=500sin100t0.64cm/s
v 0 ( 速度 ) = 0.64 v_0(速度)=0.64 v0(速度)=0.64
v_aim==-300
推出目标 r a d = = 0.64 推出目标rad==0.64 推出目标rad==0.64
100 t − 0.64 = 0.64 100t-0.64=0.64 100t0.64=0.64
t = 1.28 ∗ 1 0 − 2 t=1.28*10^-2 t=1.28102

9.1.4 简谐振动的能量

一.公式解释

9.1.12.1

E p = 1 2 k x 2 = 1 2 A 2 c o s 2 ( w 0 t + φ ) E_p={1 \over 2 }kx^2={1 \over 2}A^2cos^2(w_0t+φ) Ep=21kx2=21A2cos2(w0t+φ)

9.1.12.2

E k = 1 2 m v 2 = 1 2 m w 0 2 A 2 s i n 2 ( w 0 t + φ ) E_k={1 \over 2}mv^2={1 \over 2}mw_0^2A^2sin^2(w_0t+φ) Ek=21mv2=21mw02A2sin2(w0t+φ)
由上述可知弹簧阵子总机械能为

9.1.2

E = E k + E p = 1 2 K A 2 = 1 2 m w 0 2 A 2 E=E_k+E_p={1 \over 2}KA^2={1 \over 2}mw_0^2A^2 E=Ek+Ep=21KA2=21mw02A2
此外

9.1.2.3

E p ˉ = 1 T ∫ 0 T 0 E p d t = 1 T 0 ∫ 0 T 0 1 2 K A 2 c o s 2 ( w 0 t + φ ) d t = 1 4 K A 2 \bar{E_p}={1 \over T} \int_{0}^{T_0}E_pdt={1 \over T_0} \int_{0}^{T_0}{1 \over 2}KA^2cos^2(w_0t+φ)dt={1 \over 4}KA^2 Epˉ=T10T0Epdt=T010T021KA2cos2(w0t+φ)dt=41KA2

9.1.2.4

E k ˉ = 1 T ∫ 0 T 0 E k d t = 1 T 0 ∫ 0 T 0 1 2 K A 2 s i n 2 ( w 0 t + φ ) d t = 1 4 K A 2 \bar{E_k}={1 \over T} \int_{0}^{T_0}E_kdt={1 \over T_0} \int_{0}^{T_0}{1 \over 2}KA^2sin^2(w_0t+φ)dt={1 \over 4}KA^2 Ekˉ=T10T0Ekdt=T010T021KA2sin2(w0t+φ)dt=41KA2

9.1.5-其他简谐振动

1.单摆

在这里插入图片描述

d 2 Θ d t 2 + g L Θ = 0 {d^2 \varTheta \over dt^2}+{g \over L } \varTheta=0 dt2d2Θ+LgΘ=0
Θ = Θ m c o s ( w 0 t + φ ) \varTheta =\varTheta_m cos(w_0t+φ) Θ=Θmcos(w0t+φ)
w_0(单摆振动的固有角频率)=\sqrt{{g \over l}}
4
v 0 ( 单摆振动的固有频率 ) = 1 2 π g l v_0(单摆振动的固有频率)={1 \over 2π}\sqrt{{g \over l}} v0(单摆振动的固有频率)=2π1lg
T 0 (单摆固有周期 ) = 2 π l g T_0(单摆固有周期)=2π\sqrt{{l \over g}} T0(单摆固有周期)=2πgl
Θ_m== 最大角位移(角振幅)φ==初相位 这两个由初始条件决定

2.复摆

在这里插入图片描述

d 2 Θ d t 2 + m g l I Θ = 0 {d^2\varTheta \over dt^2}+{mgl \over I} \varTheta=0 dt2d2Θ+ImglΘ=0
Θ = Θ m c o s ( w 0 t + φ ) \varTheta =\varTheta_m cos(w_0t+φ) Θ=Θmcos(w0t+φ)
w 0 ( 复摆振动的固有角频率 ) = m g l i w_0(复摆振动的固有角频率)=\sqrt{{mgl \over i}} w0(复摆振动的固有角频率)=imgl
E ( 机械能 ) = m g l ( 1 − c o s Θ ) + 1 2 i Ω 2 ( Ω = = d Θ d t = = 刚体摆动的角速度) E(机械能)=mgl(1-cos\varTheta)+{1 \over 2}iΩ^2(Ω=={d\varTheta\over dt }==刚体摆动的角速度) E(机械能)=mgl(1cosΘ)+21iΩ2Ω==dtdΘ==刚体摆动的角速度)
d 2 d t 2 + m g l i Θ = 0 {d^2 \over dt^2}+{mgl \over i}\varTheta=0 dt2d2+imglΘ=0

9.2-阻尼振动(不怎么考,不用记公式)

9.2.2-阻尼振动方程

式子9.2.1

F 合 = − k x − γ v ( 速度 ) = m d 2 x d t 2 F_合=-kx-γv(速度)=m{d^2x \over dt^2} F=kxγv(速度)=mdt2d2x
总结上式得 m d 2 x d t 2 + γ m d x d t + k m x = 0 总结上式得m{d^2x \over dt^2}+{γ \over m}{dx \over dt}+{k \over m}x=0 总结上式得mdt2d2x+mγdtdx+mkx=0
令 2 β ( 阻尼因数 ) = γ m ∣ ∣ ∣ ∣ ∣ w 0 2 = k m ( w 0 = = 固有角频率) 令 2β(阻尼因数)={γ \over m} |||||w_0^2={k \over m}(w_0==固有角频率) 2β(阻尼因数)=mγ∣∣∣∣∣w02=mkw0==固有角频率)`

d 2 x d t 2 + 2 β d x d t + w 0 2 x = 0 {d^2x \over dt^2}+2β{dx \over dt}+ w_0^2x=0 dt2d2x+2βdtdx+w02x=0
x = A 0 e − β t c o s ( w t + φ ) ( 阻尼小情况下 B < w ) x=A_0 e^{-βt}cos(wt+φ)(阻尼小情况下B<w) x=A0eβtcos(wt+φ)(阻尼小情况下B<w)
其中
w = w 0 2 − β 2 w=\sqrt{w_0^2-β^2} w=w02β2
A 0 = x 0 2 + ( v 0 + β x 0 w ) 2 A_0=\sqrt{x_0^2+({v_0+βx_0 \over w})^2} A0=x02+(wv0+βx0)2
t a n φ = [ − v 0 + β x 0 w x 0 ] tanφ=[ -{v_0+βx_0 \over wx_0}] tanφ=[wx0v0+βx0]
T = 2 π w = 2 π w 0 2 − β 2 > T 0 T={2π \over w}={2π \over \sqrt{w_0^2-β^2}}>T_0 T=w2π=w02β2 2π>T0
上式说明阻尼振动使T↑
刚好回到原点–临界阻尼 回不到–过阻尼 周期运动–欠阻尼

9.3- 受迫振动

9.3.1-受迫振动方程

首先,设驱动力为
F=H cos wt
并同时收到弹性力和阻力作用
− k x − γ d x d t + H c o s w t = m d 2 x d t 2 -kx-γ{dx \over dt}+Hcoswt=m{d^2x \over dt^2} kxγdtdx+Hcoswt=mdt2d2x
其中,H==驱动力最大值,称为力幅,w为驱动力变化的角频率
整理得
d x 2 d t 2 + γ m d x d t + k m x = H m c o s w t {dx^2 \over dt^2}+{γ \over m}{dx \over dt}+{k \over m}x={H \over m}coswt dt2dx2+mγdtdx+mkx=mHcoswt
w 0 2 = k m , 2 β = γ m , h = H m w_0^2={k \over m} \quad,\quad 2β={γ \over m} \quad,\quad h={H\over m} w02=mk,2β=mγ,h=mH
最终得解
x = A 0 e − β t c o s ( w 0 2 − β 2 t + φ 0 ) + A c o s ( w 0 t + φ ) x=A_0e^{-βt}cos(\sqrt{w_0^2-β^2t}+φ_0)+Acos(w_0t+φ) x=A0eβtcos(w02β2t +φ0)+Acos(w0t+φ)
上述说明,受迫振动可看做两个振动合成,一个逐渐减少–暂态解。一个是振幅不变的–稳态解
最后,受迫振动的稳定状态由下述式子表示
x = A c o s ( w t + φ ) x=Acos(wt+φ) x=Acos(wt+φ)
其中,角频率w就是驱动力的角频率,此时,振幅为
A = h ( w 0 2 = w 2 ) 2 + 4 β 2 w 2 A={h \over \sqrt{(w_0^2=w^2)^2+4β^2w^2}} A=(w02=w2)2+4β2w2 h
此时,受迫振动和驱动力的相位差φ满足
t a n φ = − 2 β w w 0 2 − w 2 tanφ={-2βw \over w_0^2-w^2} tanφ=w02w22βw
这些都与初始条件无关

9.4-简谐振动的合成

9.4.1-两个同方向同频率简谐振动的合成

x 1 = A 1 c o s ( w t + ϕ 1 ) , x 2 = A 2 c o s ( w t + ϕ 2 ) x_1=A_1cos(wt+\phi_1),x_2=A_2cos(wt+\phi_2) x1=A1cos(wt+ϕ1)x2=A2cos(wt+ϕ2)
其中A和 ϕ \phi ϕ为振幅和初始相位
x 1 , x 2 表示两个振动相对于同一个平衡点,沿着同方向的位移 x_1,x_2表示两个振动相对于同一个平衡点,沿着同方向的位移 x1,x2表示两个振动相对于同一个平衡点,沿着同方向的位移
根据叠加原理
x= x 1 + x 2 x_1+x_2 x1+x2
这里,我们使用旋转矢量法

在这里插入图片描述
由于 x 1 , x 2 同频率,所以 A 1 , A 2 绕 o 点转动 w 一样 x_1,x_2同频率,所以A_1,A_2绕o点转动w一样 x1,x2同频率,所以A1,A2o点转动w一样所以
组成的四边形稳定不变,合成的 A 不变 组成的四边形稳定不变,合成的A不变 组成的四边形稳定不变,合成的A不变
所以,合成的振动也是简谐振动 所以,合成的振动也是简谐振动 所以,合成的振动也是简谐振动

x = A c o s ( w t + ϕ ) x=Acos(wt+\phi) x=Acos(wt+ϕ)(9.4.1)
由余弦定理
A = A 1 2 + A 2 2 + 2 A 1 A 2 c o s ( ϕ 2 − ϕ 1 ) A=\sqrt{A_1^2+A_2^2+2A_1A_2cos(\phi_2-\phi_1)} A=A12+A22+2A1A2cos(ϕ2ϕ1) (9.4.2)
由大直角三角形可以得出
t a n ϕ = A 1 s i n ϕ + A 2 ϕ 2 A 1 c o s ϕ 1 + A 2 c o s ϕ 2 tan\phi={A_1sin\phi+A_2\phi_2\over A_1cos\phi_1+A_2cos\phi_2} tanϕ=A1cosϕ1+A2cosϕ2A1sinϕ+A2ϕ2(9.4.3)
其中
因为
x = x 1 + x 2 = A 1 c o s ( w t + ϕ 1 ) + A 2 c o s ( w t + ϕ 2 ) x=x_1+x_2=A_1cos(wt+\phi_1)+A_2cos(wt+\phi_2) x=x1+x2=A1cos(wt+ϕ1)+A2cos(wt+ϕ2)
= ( A 1 c o s ϕ 1 + A 2 c o s ϕ 2 ) c o s w t − ( A 1 s i n ϕ 1 + A 2 s i n ϕ 2 ) s i n w t =(A_1cos\phi_1+A_2cos\phi_2)coswt-(A_1sin\phi_1+A_2sin\phi_2)sinwt =(A1cosϕ1+A2cosϕ2)coswt(A1sinϕ1+A2sinϕ2)sinwt
又因为
x = A c o s ( w t + ϕ ) = A c o s w t c o s ϕ − A s i n w t s i n ϕ x=Acos(wt+\phi)=Acoswtcos\phi-Asinwtsin\phi x=Acos(wt+ϕ)=AcoswtcosϕAsinwtsinϕ
所以
{ A c o s ϕ = A 1 c o s ϕ 1 + A 2 cos ⁡ ϕ 2 A s i n ϕ = A 1 s i n ϕ 1 + A 2 c o s ϕ 2 \begin{cases}Acos\phi=A_1cos\phi_1+A_2\cos\phi_2\\Asin\phi=A_1sin\phi_1+A_2cos\phi_2\end{cases} {Acosϕ=A1cosϕ1+A2cosϕ2Asinϕ=A1sinϕ1+A2cosϕ2

式子9.4.2表明,何振东不仅与两个分振动的振幅有关,还和两个分震动的相位差 ϕ = ϕ 2 − ϕ 1 \phi=\phi_2-\phi_1 ϕ=ϕ2ϕ1有关
下面讨论经常运用到的两个重要特殊情况
1.
两个振动同相位,简称同相即 Δ ϕ = ϕ 1 + ϕ 2 = + − 2 k π ( k = 0 , 1 , 2.... ) Δ\phi=\phi_1+\phi_2=+-2kπ(k=0,1,2....) Δϕ=ϕ1+ϕ2=+2k=0,1,2....
这种情况下,cos( ϕ 2 − ϕ 1 \phi_2-\phi_1 ϕ2ϕ1)=1
由9.4.2得
A=A 1 + A 2 _1+A_2 1+A2(9.4.4)
和振幅最大,两个分振动合成效果是振动加强
2.
两个振动相位相反 反相
此时
ϕ 2 − ϕ 1 = ( 2 k + 1 ) π \phi_2-\phi_1=(2k+1)π ϕ2ϕ1=(2k+1)π
A= ∣ A 1 − A 2 ∣ |A_1-A_2| A1A2

当相位差为其他值时,和振幅A的值将介于最大值 A 1 + A 2 A_1+A_2 A1+A2和最小值 ∣ A 1 − A 2 ∣ |A_1-A_2| A1A2之间

9.4.2 两个同方向不同频率简谐振动的合成—拍

此处只对两个振幅相同的分振动的合成情况进行讨论

由于二者的频率不同,所以总有时刻使二者同相位
选两个分振幅重合时刻为 t 0 t_0 t0并将此方向设为x轴正方向
x 1 = A 0 c o s ( w 1 t ) x_1=A_0cos(w_1t) x1=A0cos(w1t) x 2 = A 0 c o s ( w 2 t ) x_2=A_0cos(w_2t) x2=A0cos(w2t)
x = x 1 + x 2 = A 0 c o s w 1 t + A 0 c o s w 2 t x=x_1+x_2=A_0cosw_1t+A_0cosw_2t x=x1+x2=A0cosw1t+A0cosw2t
= 2 A 0 c o s ( w 2 − w 1 2 t ) c o s ( w 2 + w 1 2 t ) =2A_0cos({w_2-w_1 \over 2}t)cos({w_2+w_1\over2}t) =2A0cos(2w2w1t)cos(2w2+w1t)(9.4.6)
根据9.4.6,一般情况下不很明显,但当
| w 2 − w 1 < < w 2 + w 1 w_2-w_1<<w_2+w_1 w2w1<<w2+w1|时
形成合成振幅A周期性变化现象
在这里插入图片描述

A= 2 A 0 c o s ( w 2 − w 1 2 t ) 2A_0cos({w_2-w_1 \over 2}t) 2A0cos(2w2w1t)

拍频:单位时间内振动加强或者减弱次数
v(拍频)= 2 2 π ∣ w 2 − w 1 2 ∣ = ∣ v 2 (频率) − v 1 (频率) ∣ {2 \over 2π}|{ w_2-w_1\over2 }|=|v_2(频率)-v_1(频率)| 2π22w2w1=v2(频率)v1(频率)
此式子说明:拍频=两个分震动频率之差

9.4.3-两个方向相互垂直的简谐振动的合成

下面只考虑同频

x = A 1 c o s ( ω t + φ 1 ) , x = A_1 cos(ωt +φ1), x=A1cos(ωt+φ1),
y = A 2 c o s ( ω t + φ 2 ) y = A_2 cos(ωt +φ2 ) y=A2cos(ωt+φ2)

x 2 A 1 2 + y 2 A 2 2 − 2 x y A 1 A 2 c o s ( ϕ 1 − ϕ 2 ) = s i n 2 ( ϕ 2 − ϕ 1 ) {x^2 \over A_1^2}+{y^2 \over A_2^2}-{ 2xy\over A_1A_2}cos(\phi_1-\phi_2)=sin^2(\phi_2-\phi_1) A12x2+A22y2A1A22xycos(ϕ1ϕ2)=sin2(ϕ2ϕ1)
这是一个椭圆方程
说明两个同频率,相互垂直的简谐振动合成结果运动轨迹呈一个椭圆
具体图形由 Δ ϕ = ϕ 1 − ϕ 2 来决定的 Δ\phi=\phi_1-\phi_2来决定的 Δϕ=ϕ1ϕ2来决定的

在这里插入图片描述
如不同频,一般用李萨如图形确定

在这里插入图片描述
如果已知一个振动频率和其李萨如图形,就能知道另一个与其垂直的振动的频率

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值