第四章 随机变量的数字特征

第四章随机变量的数字特征

4.1:数字期望

一.数学期望

数学期望的概念

数学期望–描述随机变量取值的平均特征
例1.
设某班40名学生的概率统计成绩及得分人数如下表所示
分数 40 60 70 80 90 100
人数 1 6 9 15 7 2
则学生的平均成绩是总分/总人数(分)。即

在这里插入图片描述

离散型随机变量的数学期望

定义:
设离散型随机变量X的分布律为
P{X= x k x_k xk}= p k p_k pk,k=1,2,…
若级数
∑ k = 1 ∞ x k p k \sum_{k=1}^{\infty}x_kp_k k=1xkpk绝对收敛,则称级数
∑ k = 1 ∞ x k p k \sum_{k=1}^\infty x_kp_k k=1xkpk
为随机变量X的数学期望 记为E(X)即
E ( X ) = ∑ k = 1 ∞ x k p k E(X)={\sum_{k=1}^{\infty}x_kp_k} E(X)=k=1xkpk

连续型随机变量的数学期望

设连续型随机变量X的概率密度 f ( x ) f{(x)} f(x),若积分
∫ − ∞ + ∞ x f ( x ) d x \int_{-\infty}^{+\infty}xf(x)dx +xf(x)dx
绝对收敛,则称积分 ∫ − ∞ + ∞ x f ( x ) d x \int_{-\infty}^{+\infty}xf(x)dx +xf(x)dx的值为随机变量X的数字期望,记为E(X),即
E(X)= ∫ − ∞ + ∞ x f ( x ) d x \int_{-\infty}^{+\infty}xf(x)dx +xf(x)dx

数学期望的本质–加权平均 它是一个数,不再是随机变量

注意:不是所有的随机变量都有数学期望
例如:柯西(Cauchy)分布的密度函数为:
f(x)= 1 π ( 1 + x 2 ) , − ∞ < x < + ∞ { 1 \over π(1+x^2) },-{\infty}<x<+\infty π(1+x2)1<x<+
因为
在这里插入图片描述
(不绝对收敛)
在这里插入图片描述

二.随机变量函数的数学期望

在这里插入图片描述
定理1 设Y是随机变量X的函数 :Y=g(X)
(1)X(离散型)的分布律为 p k p_k pk=P{X= x k x_k xk},k=1,2…若级数 ∑ k = 1 ∞ g ( x k ) p k \sum_{k=1}^{\infty}g(x_k)p_k k=1g(xk)pk绝对收敛 ,则
E ( Y ) = E [ g ( X ) ] = ∑ k = 1 ∞ g ( x k ) p k E(Y)=E[g(X)]={\sum_{k=1}^{\infty}g(x_k)p_k} E(Y)=E[g(X)]=k=1g(xk)pk
(2)X(连续型)的概率密度为f(x),若积分 ∫ − ∞ + ∞ g ( x ) f ( x ) d x {\int_{-\infty}^{+\infty}g(x)f(x)dx} +g(x)f(x)dx绝对收敛 则
E(Y)=E[g(X)]={ ∫ − ∞ + ∞ g ( x k ) f ( x ) d x \int_{-\infty}^{+\infty}g(x_k)f(x)dx +g(xk)f(x)dx},
定理推广:设Z=g(X,Y)(g为二元连续函数)
(1)若(X,Y)是离散型,其分布律为
P{X= x i x_i xi,Y= y j y_j yj}= p i j p_{ij} pij,i,j=1,2…则
E(Z)=E[g(X,Y)]= ∑ i = 1 ∞ ∑ j = 1 ∞ g ( x i , y j ) p i j {\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}g(x_i,y_j)p_{ij}} i=1j=1g(xi,yj)pij
(2)若(X,Y)是连续型 其概率密度为f(x,y)则
E(Z)=E[g(X,Y)]= ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy ++g(x,y)f(x,y)dxdy

结论:
若(X,Y)是离散型,其分布律为
P{X= x i , Y = y i x_i,Y=y_i xi,Y=yi}= P i j P_{ij} Pij,i,j=1,2,…,则
E(X)= ∑ i = 1 ∞ ∑ i = 1 ∞ x i p i j {\sum_{i=1}^{\infty}\sum_{i=1}^{\infty}x_ip_{ij}} i=1i=1xipij
E(Y)= ∑ i = 1 ∞ ∑ i = 1 ∞ y i p i j {\sum_{i=1}^{\infty}\sum_{i=1}^{\infty}y_ip_{ij}} i=1i=1yipij
若(X,Y)是连续型,其概率密度为f(x,y)则
E(X)= ∫ − ∞ + ∞ ∫ − ∞ + ∞ x f ( x , y ) d x d y {\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xf(x,y)dxdy} ++xf(x,y)dxdy
E(Y)= ∫ − ∞ + ∞ ∫ − ∞ + ∞ y f ( x , y ) d x d y {\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yf(x,y)dxdy} ++yf(x,y)dxdy

三.数学期望的性质

假设一下随机变量的数学期望均存在
1.E(C )=C
2.E(CX)=CE(X)
3.E(X+Y)=E(X)+E(Y)
4.设XY相互独立,则E(XY)=E(X)E(Y)

注:性质3,4可推广到有限个情况
对于性质4来讲反之不成立

分解法

在这里插入图片描述
(关于为什么前面下不下车对后面概率没有影响,我会在后续此处补充证明)
在这里插入图片描述

4.2-方差

一。方差的定义和计算

1.概念引入

方差是一个常用来体现随机变量取值分散程度的量

2.方差的定义

设X是一随机变量,若E{ [ X − E ( x ) ] 2 [X-E(x)]^2 [XE(x)]2}存在,则称其为随机变量X的方差,记为D(X)或Var(X)
D(X)=Var(X)=E{ [ X − E ( X ) ] 2 [X-E(X)]^2 [XE(X)]2}
D ( X ) \sqrt{D(X)} D(X) 为随机变量X的标准差或均方差,记为 σ ( X ) \sigma(X) σ(X)
D(X)–描述随机变量X的取值偏离均值的平均偏离程度–数

3.方差的意义

方差是常用来体现随机变量X取值分散程度的量
D(X)值大,表示X的取值分散程度大,E(X)代表性差
D(X)小,X集中,E(X)代表性好

(4)随机变量方差的计算

1.利用定于计算

离散型:
D(X)= ∑ k = 1 + ∞ [ x k − E ( X ) ] 2 p k \sum_{k=1}^{+\infty}[x_k-E(X)]^2p_k k=1+[xkE(X)]2pk
连续型
D(X)= ∫ − ∞ + ∞ [ x k − E ( X ) ] 2 f ( x ) d x \int_{-\infty}^{+\infty}[x_k-E(X)]^2f(x)dx +[xkE(X)]2f(x)dx

2.利用公式计算

D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E(X^2)-[E(X)]^2 D(X)=E(X2)[E(X)]2

二。方差的性质

(c为常数)
(1)D©=0
(2)D(CX)= C 2 C^2 C2D(X)
一般地:D(aX+b)= a 2 D ( x ) a^2D(x) a2D(x)
(3)D(X±Y)=D(X)+D(Y)±2E{[X-E(X)][Y-E{Y}]}
特别,若X与Y相互独立 则D(X±Y)=D(X)+D(Y)
推广: X 1 , , , , , X n X_1,,,,,X_n X1,,,,,Xn是n个相互独立的随机变量,则
D ( X 1 + X 2 + . . . . . X n ) D(X_1+X_2+.....X_n) D(X1+X2+.....Xn)= D ( X 1 ) + D ( X 2 ) + . . . . + D ( X n ) D(X_1)+D(X_2)+....+D(X_n) D(X1)+D(X2)+....+DXn
(4)D(X)=0 <------>P{X=C}=1其中C=E(X)
(5)方差偏差程度最小性

正态分布X~N( μ , σ 2 \mu,\sigma^2 μ,σ2)的E(X)= μ \mu μ
D(X)= σ 2 \sigma^2 σ2

在这里插入图片描述

4.3 协方差 相关系数

一。协方差及相关系数

对于二维随机变量(X,Y)除每个随机变量各自的概率特性外,相互之间还有某种联系,问题是用一个怎样的数取反应这种联系
若随机变量X和Y相互独立
那么
D(X+Y)=D(X)+D(Y)
若随机变量X和Y不互相独立
D(X+Y)=D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}
反映了XY之间的某种关系

1.定义

设(X,Y)为二维随机变量 若E{[X-E(X)][Y-E(Y)]}存在,则称其为随机变量X与Y的协方差 记为Cov(X,Y)即
C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]}
若D(X)>0,D(Y)>0

ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{XY}={Cov(X,Y)\over{\sqrt{D(X)D(Y)}}} ρXY=D(X)D(Y) Cov(X,Y)
为随机变量X与Y的相关系数
ρ x y = 0 \rho_{xy}=0 ρxy=0,称XY不相关

2.说明

若随机变量X和Y相互独立
则Cov(X,Y)=0;

3.协方差的计算公式

方法一:

(1)若(X,Y)为离散型,P{X= x i , Y = y i x_i,Y=y_i xi,Y=yi}=p i j _{ij} ij

Cov(X,Y)= ∑ i , j [ x i − E ( X ) ] [ y j − E ( Y ) ] p i j \sum_{i,j}[x_i-E(X)][y_j-E(Y)]p_{ij} i,j[xiE(X)][yjE(Y)]pij
(2)。连续型:
Cov(X,Y)= ∫ − ∞ + ∞ ∫ − ∞ + ∞ [ x i − E ( X ) ] [ y j − E ( Y ) ] f ( x , y ) d x d y \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}[x_i-E(X)][y_j-E(Y)]f(x,y)dxdy ++[xiE(X)][yjE(Y)]f(x,y)dxdy

方法二:

(1)。Cov(X,Y)=E(XY)-E(X)E(Y)
(2)D(X±Y)=D(X)+D(Y)±2Cov(X,Y)

4.性质

(1)Cov(X,Y)=Cov(Y,X)
(2)Cov(aX,bY)=abCov(X,Y),ab为常数
(3)Cov( X 1 + X 2 X_1+X_2 X1+X2,Y)=Cov( X 1 , Y X_1,Y X1,Y)+Cov( X 2 , Y X_2,Y X2,Y)
(4)若X与Y独立 则Cov(X,Y)=0;
(5)Cov(X,X)=D(X)
(6)如果(X,Y)~N( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ \mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho μ1,μ2,σ12,σ22,ρ)
则Cov(X,Y)={ σ 1 σ 2 ρ \sigma_1\sigma_2\rho σ1σ2ρ}
于是 ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) = ρ \rho_{XY}={Cov(X,Y)\over\sqrt{D(X)D(Y)}}=\rho ρXY=D(X)D(Y) Cov(X,Y)=ρ

结论:(1):二维正态分布密度函数中,参数 ρ \rho ρ代表了X与Y的相关系数
(2):二维正态随机变量X,Y相关系数=0等价于X与Y相互独立即X,Y独立《-------》X与Y不相关

、注 相关==线性相关,除二维正态外,其余只能独立推不相关,反之不成立

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值