tju-概率论-第二章 随机变量及分布

2.1-随机变量及分布函数

定义2.1

设随机试验的样本空间Ω,如果对每一个w∈Ω,都有一个确定的实数X(w)与之对应,则称Ω上的实值函数X(w) 为随机变量 简写为X

所以—》随机变量X是样本点w的一个函数,它的定义域是样本空间Ω 而值域是实数域或其子集,且它的取值随试验的结果的不同而变化

e.g.2.1

一袋子 三黑球(b1,b2 ,b3) 两红球(r1,r2) 的袋中任取两球 则此试验 的 样本空间为
Ω={(b1,b2),(b1,b3),(b2,b3),(b1,r1),(b1,r2),(b2,r1),(b2,r2),(b3,r1)(b3 ,r2)(r1,r2)}
设 X(w)= 0 if w=(r1,r2)
X(w)= 1 if w=(b1,r1),(b1,r2),(b2,r1),(b2,r2)(b3,r1)(b3,r2) X(w= 2 if w=(b1,b2)(b1,b3) (b2,b3)
则X(w) 是定义在Ω 上 的一个随机变量, 值域为{0,1,2},它表示取到的黑球数量这里我们用{X=0}表示事件 {两红},概率P{X=0}…同理1,2

定义2,2+(算P{a<x<b})

设X是随机变量 对任意给定的实数x∈(-∞,+∞)令
F(x)=P{X<=x}
则称 F(x)为随机变量X的概率分布函数,简称分布函数
分部函数F(x)是一个普通的函数,它的定义域是实数域,F(x)在x点处的函数值表示事件{X<=x}的概率 即随机变量x落在区间(-∞,x】内的分部概率

对于F(x)有以下性质:

(1):对于任意实数x,都有0<=F(x)<=1,且F(-∞)=lim(x->-∞)F(x)=0,F(+∞)=lim(x->+∞)F(x)=1
(2):F(x)是x的单调不减函数,即对任意x1<=x2,F(x1)<=F(x2)
(3):F(x)是右连续函数,即对任意实数a,有
lim ⁡ x → a + F ( x ) = F ( a + 0 ) = F ( a ) \lim_{x\rightarrow a+}F(x)=F(a+0)=F(a) xa+limF(x)=F(a+0)=F(a)
数学上可以证明,满足上述三条性质的函数一定可以作为某个随机变量的分布函数


若已知随机变量X的分布函数,则可计算X落在任一区间的概率,比如对任意实数x1,x2(x1<x2)
P{x1<X≤x2}=P{X<=x2}-P{X<=x1}=F(x2)-F(x1)
P{x1<X<x2}=P{x1<X<=X2}-P{X=x2}
P{x1≤X≤x2}=P{x1<X≤x2}=P{x1<X≤x2}+P{X=x1}
P{x1≤X<x2}=F(x2)-F(x1)+P{X=x1}-P{X=x2}


2.2 离散型随机变量及其分布

一,离散型随机变量及其分布律

1.定义

x k x_k xk(k=1,2,3…)是离散型随机变量X所取的一切可能值,称等式 P ( X = x k ) = P k P(X=x_k)=P_k P(X=xk)=Pk ,K=1,2,3,…
为X的分布律或概率分布
其中 P k ( k = 1 , 2 , 3..... ) 满足 P_k(k=1,2,3.....)满足 Pk(k=1,2,3.....)满足
(1) p k > = 0 , k = 1 , 2 , 3..... p_k>=0,k=1,2,3..... pk>=0,k=1,2,3.....
(2) ∑ k = 1 ∞ p k = 1 \sum_{k=1}^∞p_k=1 k=1pk=1

2.离散型随机变量X概率分布的表示方法

(1) 列表法:分布律可以用表格形式表 x n − > x_n^{->} xn>一般从小到大排列
x x 1 x1 x1 x 2 x2 x2 x n x_n xn
p k p_k pk p 1 p_1 p1 P 2 P_2 P2 p n p_n pn
(2)公式法 e.g. P{X=k}= C 3 3 − k C 2 k C 5 3 {C_3 ^{3-k} C_2^k} \over C_5^3 C53C33kC2k
3(图示法)在这里插入图片描述

二 . 三种常用离散型随机变量的分布

1. 两点分布、

如果随机变量只能取 0,1两个值,其分布律为
P{X=1}=p, P{X=0}=1-p (0<p<1)
或P{x=k}= p k ( 1 − p ) 1 − k , k = 0 , 1 , ( 0 < p < 1 ) p^k(1-p)^1-k,k=0,1,(0<p<1) pk(1p)1k,k=0,1,(0<p<1)
则称X服从参数为p的(0-1)分部或;两点分布
(0-1)分部分部列

X  0   1

p k p_k pk 1-p p
举例:可用两点分布的:新生婴儿性别 明天下不下雨 种子发不发芽

2.二项分布

伯努利试验

伯努利试验: 只有A和 A {\over A} A的实验
n重伯努利试验:设E为伯努利试验,将E独立的重复进行n次

n重伯努利试验

n重伯努利试验性质:(1)每次试验结果是A或者 A {\over A} A
(2)将E独立重复n次
(3)各次实验相互独立
(4)共进行了n次
定理:P{x=K}= C n K p k q n − k C_n^Kp^kq^{n-k} CnKpkqnk
由于这n次实验互不相容,由概率有限可加性得到:
∑ k = 0 n C n k p k q n − k = ( p + q ) n = 1 \sum_{k=0}^nC_n^kp^kq^{n-k}=(p+q)^n=1 k=0nCnkpkqnk=(p+q)n=1

二项分布

定义:若离散型随机变量X的分布律为
P X = k = C n k p k q n − k , k = 1 , 2 , . . . . . n P{X=k}=C_n^kp^kq^{n-k},k=1,2,.....n PX=k=Cnkpkqnk,k=1,2,.....n
其中0<p<1 ,q=1-p,则称参数为n,p的二项分布,记为
X~B(n,p).

3.泊松分布

P{x=k}= λ k e − λ k ! { λ^ke^{-λ}\over k!} k!λkeλ,k=0,1,2…,
其中λ是常数,则称X服从参数为λ的泊松分布
记为
X~P(λ)

二项分布和泊松分布关系

我们把每次实验中出现概率很小的时间成为稀有事件
由泊松定理
即λ=np
C n p p k ( 1 − p ) n − k = λ k e − λ k ! C_n^pp^k(1-p)^{n-k}={λ^k e^{-λ}\over k! } Cnppk(1p)nk=k!λkeλ

几何分布

定义:在伯努利试验中,记实验中事件A发生概率为p,如果X为事件A首次发生时实验次数,X=1,2…
则称X为服从参数p的几何分布
概率分布为:
P x = k = ( 1 − p ) k − 1 p P{x=k}=(1-p)^{k-1}p Px=k=(1p)k1pk=1,2…

定理:几何分布的无记忆性

设X服从参数为p的几何分布,则对任意正整数m,n,
P { X > m + n ∣ X > m } = P { X > n } P\{X>m+n|X>m \}=P \{ X>n \} P{X>m+nX>m}=P{X>n}

超几何分布

从N物品中(其中M件不合格)抽出n个产品(不放回),其中不合格产品X服从超几何分布
P x = k = C M K C N − M n − k C N n P{x=k}={C_M^K C_{N-M}^{n-k} \over C_N^n} Px=k=CNnCMKCNMnk
当n<<N时,每次抽取对不合格率p=M/N改变很小,可近似看为放回抽样,
这时,超几何分布可近似为二项分布:
C M k C N − M n − k C M n = C n k p k ( 1 − p ) n − k ,其中 p = M N 。 { C_M^kC_{N-M}^{n-k}\over C_M^{n} }=C_n^kp^k(1-p)^{n-k},其中p={M \over N}。 CMnCMkCNMnk=Cnkpk(1p)nk,其中p=NM

2.3-随机变量分布函数

一, 概念

需要知道X在任意有限区间(a,b)内取值的概率
例如:求随机变量X落在区间(x1,x2]内的概率
P { x 1 < x < = x 2 } = P { X < = x 2 } − P { X < = x 1 } = F ( x 2 ) − F ( x 1 ) P\{x_1<x<=x_2\}=P\{X<=x_2\}-P\{X<=x_1\}=F(x_2)-F(x_1) P{x1<x<=x2}=P{X<=x2}P{X<=x1}=F(x2)F(x1)

二.定义

设X是随机变量,x为任意实数,称函数
F(x)=P{X<=x}(-∞<x<+∞)
为x的分布函数
X分布函数是F(x)基座X~F(x)或者 F X ( x ) F_X(x) FX(x)
表示X落在(-∞,x】的概率

三:分布函数的性质

1.单调不减 即 若 x 1 < x 2 x_1<x_2 x1<x2则F(x_1)<=F(x_2);
2.非负有界
0<=F(x)<=1(-∞<x<+∞),

lim ⁡ x − > − ∞ F ( x ) = F ( − ∞ ) = 0 , \lim\limits_{x->-∞}F(x)=F(-∞)=0, x>limF(x)=F()=0,
lim ⁡ x − > + ∞ F ( x ) = F ( + ∞ ) = 1 \lim\limits_{x->+∞}F(x)=F(+∞)=1 x>+limF(x)=F(+)=1
3.右连续 F(x+0)=F(x)
性质1–3是鉴别一个函数是否时某随机变量的分布函数的充分必要条件

离散型分布函数特点

F ( x ) = P { X < = x } = ∑ x k < = x P { X = x k } = ∑ x k < = x P k F(x)=P\{X<=x\}=\sum_{x_k<=x}P\{X=x_k\}=\sum_{x_k<=x}P_k F(x)=P{X<=x}=xk<=xP{X=xk}=xk<=xPk
其中 P { X = x k } = p k , k = 1 , 2... P\{X=x_k\}=p_k,k=1,2... P{X=xk}=pk,k=1,2...
离散型随机变量的分布函数的图形特点
1.它的图形是一条有连续的阶梯型曲线
2.在随机变量的每一个可能取值点 x = x k x=x_k x=xk,该图形都有一个跳跃 跳跃高速为 p k {p_k} pk

2.4 连续型随机变量机器概率密度

连续型随机变量

1 .定义

定义:随机变量所取的可能值可以连续地充满某个区间,叫做连续型随机变量

概率密度的概念与性质

(1)f(x)>=0
(2) ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{- \infty}^{+\infty}f(x)dx=1 +f(x)dx=1;
(3) P { x 1 < X < = x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( x ) d x P\{x_1<X<=x_2\}=F(x_2)-F(x_1)=\int_{x_1}^{x_2}f(x)dx P{x1<X<=x2}=F(x2)F(x1)=x1x2f(x)dx
几何意义:x落在区间( x 1 , x 2 x_1,x_2 x1,x2】的概率P{ x 1 < x < = x 2 x_1<x<=x_2 x1<x<=x2},等于区间( x 1 , x 2 x_1,x_2 x1,x2】上y=f(x)之下的曲边梯形面积。
可得计算公式
P{X<=a}=F(a)= ∫ − ∞ a f ( x ) d x \int_{-\infty}^{a}f(x)dx af(x)dx
P{x>a}=1-P{x<=a}=1-F(a)
(4)若f(x)在点x处连续则有 F ’ ( x ) = f ( x ) F^’(x)=f(x) F(x)=f(x)
因为F(x)= ∫ − ∞ x f ( t ) d t \int_{-\infty}^xf(t)dt xf(t)dt当f(x)连续时,F(x)可导,所以f(x)的连续点处, F ‘ ( x ) = f ( x ) F^‘(x)=f(x) F(x)=f(x)
注:(1)在F(x)不可导的点x处,f(x)在x的函数值可任意给出
(2)对于任意值a,连续型随机变量取a的概率等于0,即P{X=a}=0;

三种重要的连续型随机变量

1.均匀分布 X~U(a,b)

设连续随机变量X具有概率密度
f ( x ) = { 0 , ( 其他 ) 1 b − a , ( a < x < b ) f(x)=\{_{0,(其他)}^{{1\over b-a},(a<x<b)} f(x)={0,(其他)ba1,(a<x<b)
则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)
在这里插入图片描述

2.指数分布(无记忆性)X~EXP( λ \lambda λ)

若随机变量X的概率密度
f ( x ) = { λ e − λ x , x > = 0 0 , x < 0 f(x) =\begin{cases} \lambda e^{-\lambda x},x>=0\\0,x<0 \end{cases} f(x)={λeλx,x>=00,x<0
λ \lambda λ为常数且大于0,则称X服从 λ \lambda λ的指数分布
显然 f(x)>=0且 ∫ − ∞ + ∞ f ( x ) d x = 1 {\int_{-\infty}^{+\infty}f(x)dx=1} +f(x)dx=1
X的分布函数为
F ( x ) = { 1 − e − λ x , x > = 0 0 , x < 0 F(x)=\begin{cases}1-e^{-\lambda x},x>=0 \\ 0,x<0 \end{cases} F(x)={1eλx,x>=00,x<0
注:指数分布无记忆性:若随机变量X对任意的s>0,t>0有
P{X>s+t|X>s}=P{x>t}则称X的分布有无记忆性,指数分布具有无记忆性

3.正态分布X~N( μ , σ 2 \mu,\sigma^2 μ,σ2)

正态分布性质

f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ f(x)={ 1\over \sqrt{2π}\sigma}e^{-{(x-\mu)^2\over2\sigma^2}},-\infty<x<+\infty f(x)=2π σ1e2σ2(xμ)2,<x<+
其中 μ , σ ( σ > 0 ) \mu,\sigma(\sigma>0) μ,σ(σ>0)为常数,则称X服从参数为 μ , σ \mu,\sigma μ,σ的正态分布,记为X~N( μ , σ 2 \mu,\sigma^2 μ,σ2)
正态分布的概率密度函数f(x)的性质
在这里插入图片描述
(3)当x= μ ± σ {\mu \pm\sigma} μ±σ处曲线有拐点,且以x轴为渐近线;
(4)对固定的 σ {\sigma} σ,改变 μ \mu μ的值,图形沿着Ox轴平移
(5)对固定的 μ , 改变 σ , σ 越小,图形越尖 {\mu},改变\sigma ,\sigma越小,图形越尖 μ,改变σ,σ越小,图形越尖
正态分布的分布函数:
F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x)={1 \over \sqrt{2π}\sigma}\int_{-\infty}^xe^{-{(t-\mu)^2\over 2\sigma^2}}dt F(x)=2π σ1xe2σ2(tμ)2dt

标准正态分布

μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1时,称X服从标准正态分布
记作X~N(0,1).其概率密度和分布函数分别用 ϕ ( x ) , Φ ( x ) \phi(x),\Phi(x) ϕ(x),Φ(x)表示,即在这里插入图片描述

ϕ ( x ) 和 Φ ( x ) \phi(x) 和 \Phi(x) ϕ(x)Φ(x)的性质

(1) ϕ ( x ) 是偶函数,即 ϕ ( x ) = ϕ ( − x ) \phi(x)是偶函数,即\phi(x)=\phi(-x) ϕ(x)是偶函数,即ϕ(x)=ϕ(x)
(2)当x=0时, ϕ ( x ) 取最大值 1 2 π , Φ ( 0 ) = 1 2 \phi(x)取最大值{1 \over \sqrt{2π}},\Phi(0)={1 \over 2} ϕ(x)取最大值2π 1Φ(0)=21
(3) Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x);
(为便于计算 Φ \Phi Φ的函数表已被画出,可查阅书)

X~N( μ , σ 2 \mu,\sigma^2 μ,σ2的计算(化为标准正态分布)

1.设X~N( μ , σ 2 \mu,\sigma^2 μ,σ2,则Z= X − μ σ {X-\mu\over \sigma} σXμ~N(0,1)
2. 若X~N( μ , σ 2 \mu,\sigma^2 μ,σ2),则F(x)= Φ ( x − μ σ ) \Phi({x-\mu\over\sigma}) Φ(σxμ)
3. P { x 1 < X < = x 2 } = Φ ( x 2 − μ σ ) − Φ ( x 1 − μ σ ) P\{x_1<X<=x_2\}=\Phi({x_2-\mu\over\sigma})-\Phi({x_1-\mu\over\sigma}) P{x1<X<=x2}=Φ(σx2μ)Φ(σx1μ)

3 σ {\sigma} σ准则

X~N(0,1)时
x取值几乎全集中在【-3,3】
推广到一般正态分布
Y~N( μ , σ 2 \mu,\sigma^2 μ,σ2)时
X在【 μ − 3 σ , μ + 3 σ \mu-3\sigma,\mu+3\sigma μ3σ,μ+3σ】概率为0.9974,成为3 σ \sigma σ准则

2.5-随机变量的函数的分布

一. 离散型随机变量函数的分布律

设X是离散型随机变量,则Y=g(X)一般也是离散型随机变量
此时,由X求Y分布律几颗
e.g.在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二.连续型随机变量函数的概率密度

设随机变量X的概率密度为 f X ( x ) f_X(x) fX(x),求随机变量Y=g(x)(g连续)的概率密度

1.一般方法–分布函数法

第一步:求出Y的分布函数 F Y ( y ) F_Y(y) FY(y)的表达式:
F Y ( y ) = P { Y < = y } = P { g ( X ) < = y } = ∫ g ( x ) < = y f X ( x ) d x F_Y(y) = {P\{Y<=y\}=P\{g(X)<=y\}}=\int_{g(x)<=y}f_X(x)dx FY(y)=P{Y<=y}=P{g(X)<=y}=g(x)<=yfX(x)dx
第二步: f Y ( y ) = F Y ‘ ( y ) f_Y(y)=F^‘_Y(y) fY(y)=FY(y)

2.公式法

定理 设随机变量 X的具有概率密度$f_X(x),其中
− ∞ < x < + ∞ -\infty<x<+\infty <x<+
设g(x)为 ( − ∞ , + ∞ ) (-\infty,+\infty) +严格单调可导函数
则Y=g(x)是连续型随机变量 其概率密度为
f Y ( y ) = { f X [ h ( y ) ] ∣ h ‘ ( y ) ∣ , a < y < b 0 , 其他 f_Y(y)=\begin{cases} f_X[h(y)]|h^‘(y)|,a<y<b\\0,其他 \end{cases} fY(y)={fX[h(y)]h(y)a<y<b0,其他
其中a=min(g(- ∞ \infty ),g(+ ∞ \infty )),b=max(g(- ∞ \infty ),g(+ ∞ \infty ))
h(y)是g(x)的反函数
**

若g(x)不是单调函数不能用此定理.

**

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值