TJU-概率论与数理统计第三章

3.1:二维联合分布函数与边缘分布函数

1.二维随机变量的分布函数

定义1:设E是一个随机试验,样本空间={e}

设X=X(e)和Y=Y(e)是定义在Ω上的随机变量,
向量(X,Y)叫做二维随机变量
在这里插入图片描述

注:二维随机变量(X,Y)的性质不仅与XY有关,还依赖X与Y的相互关系

定义2:设(X,Y)是二维随机变量,对于任意实数x,y,二元函数

F(x,y)=P{(X<=x)∩(Y<=y)}=P{X<=x,Y<=y}
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为随机变量 X,Y的联合分布函数
在这里插入图片描述
(大加小减两中↑)

分布函数F(x,y)的性质

1)F(x,y)是变量x和y的不减函数
对任意固定的y,当 x 2 > x 1 时 , 有 F ( x 2 , y ) > = F ( x 1 , y ) x_2>x_1时,有F(x_2,y)>=F(x_1,y) x2>x1,F(x2,y)>=F(x1,y)
对任意固定的x,当 y 2 > y 1 时 , 有 F ( x , y 2 ) > = F ( x , y 1 ) y_2>y_1时,有F(x,y_2)>=F(x,y_1) y2>y1,F(x,y2)>=F(x,y1)
2)0<=F(x,y)<=1且
F ( − ∞ , y ) = 0 , F ( x , − ∞ ) = 0 , F ( − ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1 F(-\infty,y)=0,F(x,-\infty)=0,F(-\infty,-\infty)=0,F(+\infty,+\infty)=1 F(,y)=0,F(x,)=0,F(,)=0,F(+,+)=1
3)F(x,y)关于x右连续,关于y右连续
4)对于任意 x 1 < x 2 , y 1 < y 2 x_1<x_2,y_1<y_2 x1<x2,y1<y2
F ( x 2 , y 2 ) − F ( x 1 , y 1 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) > = 0 F(x2,y2)-F(x1,y1)-F(x_2,y_1)+F(x_1,y_1)>=0 F(x2,y2)F(x1,y1)F(x2,y1)+F(x1,y1)>=0

定义3

设(X,Y)为二维随机变量 其分布函数为F(x,y).
F X ( x ) = P { X < = x } F_X(x)=P\{X<=x\} FX(x)=P{X<=x}<----(X,Y)关于X的边缘分布函数
F Y ( y ) = P { Y < = y } F_Y(y)=P\{Y<=y\} FY(y)=P{Y<=y}<----(X,Y)关于Y的边缘分布函数

注:边缘分布函数可以由X与Y的联合分布函数F(x,y)唯一确定,反之不成立
事实上, F X ( x ) = P { X < = x } = P { X < = x , Y < + ∞ } = F ( x , + ∞ ) = lim ⁡ y − > + ∞ F ( x , y ) F_X(x)=P\{X<=x\}=P\{X<=x,Y<+\infty\}=F(x,+\infty)=\lim\limits_{y->+\infty}F(x,y) FX(x)=P{X<=x}=P{X<=x,Y<+}=F(x,+)=y>+limF(x,y)
同理 F Y ( y ) = F ( + ∞ , y ) = lim ⁡ x − > + ∞ F ( x , y ) F_Y(y)=F(+\infty,y)=\lim\limits_{x->+\infty}F(x,y) FY(y)=F(+,y)=x>+limF(x,y)
一般地,边缘分布函数由联合分布函数唯一确定,
但是仅由边缘分布函数不能确定联合分布函数

2.二维随机变量的独立性

两事件A,B独立 指 P(AB)=P(A)P(B)
定义1 设 F ( x , y ) , F X ( x ) , F Y ( y ) 分别是二维随机变量( X , Y )联合分布函数及边缘分布函数,若对所有 x , y 有 F(x,y),F_X(x),F_Y(y)分别是二维随机变量(X,Y)联合分布函数及边缘分布函数,若对所有x,y有 F(x,y),FX(x),FY(y)分别是二维随机变量(X,Y)联合分布函数及边缘分布函数,若对所有x,y
P { X < = x , Y < = y } = P { X < = x } P { Y < = y } P\{X<=x,Y<=y\}=P\{X<=x\}P\{Y<=y\} P{X<=x,Y<=y}=P{X<=x}P{Y<=y}

F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)
则称随机变量XY是相互独立

注:X和Y相互独立,则对任意 x 1 < x 2 , y 1 < y 2 x_1<x_2,y_1<y_2 x1<x2,y1<y2
时间 { x 1 < X < x 2 } 与 { y 1 < Y < y 2 } 也独立 \{x_1<X<x_2\}与\{y_1<Y<y_2\}也独立 {x1<X<x2}{y1<Y<y2}也独立
并且,如果已知边缘分布再加上独立条件可以得到联合分布

3.2-二维离散型随机变量及分布

性质

联合分布
其中第一个是联合分布,后两个是边缘分布
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二维离散型随机变量(X,Y)的条件分布律

定义1:

设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y= y j y_j yj}>0
则称
P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { y = y j } = P i j P . j P\{X=x_i|Y=y_j\}={P\{X=x_i,Y=y_j\} \over P\{y=y_j\}}={P_{ij}\over P{.j}} P{X=xiY=yj}=P{y=yj}P{X=xi,Y=yj}=P.jPij
Y = y j Y=y_j Y=yj条件下随机变量X的条件分布律

用分布律表格验证独立

(上图)
if 独立
p 11 p 21 = P { x = x 1 } P { x = x 2 } = p 12 P 22 {p_{11}\over p_{21}}={P\{x=x_1\}\over P\{x=x_2\}}={p_{12}\over P_{22}} p21p11=P{x=x2}P{x=x1}=P22p12
以此类推

注:当两个随机变量相互独立时,联合概率分布于边缘概率分布一一对应,当两个随机变量不独立时,联合概率分布可以位移确定边缘概率分布,但反之未必
如下图,第一组独立,第二组不独立,边缘分布相同但联合分布不同
在这里插入图片描述
在这里插入图片描述

3.3-二维连续型随机变量及分布

定义

定义:设二维随机变量(X,Y)的分布函数F(x,y)若存在一个非负可积函数f(x,y),使得对任意x,y有
F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v F(x,y)=\int_{-\infty}^y \int_{-\infty}^xf(u,v)dudv F(x,y)=yxf(u,v)dudv
则称(X,Y)为二维连续型随机变量,f(x,y)成为(X,Y)的概率密度,或称X和Y的联合概率密度

f(x,y)的性质

1)f(x,y)>=0
2) ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy=1 ++f(x,y)dxdy=1
3) 若f(x,y)在点(x,y)处连续,则
f ( x , y ) = ∂ 2 F ( x , y ) ∂ x ∂ y f(x,y)={∂^2F(x,y)\over ∂x∂y} f(x,y)=xy2F(x,y)
4) 设G是平面上一个区域,P{(X,Y)∈G}= ∫ ∫ G f ( x , y ) d x d y \int\int\limits_G f(x,y)dxdy Gf(x,y)dxdy

常见二维连续型随机变量的分布

一:均匀分布

f ( x , y ) = { 1 A , ( x , y ∈ G ) 0 ,其他 f(x,y)=\begin{cases}{1\over A},(x,y∈G)\\0,其他\end{cases} f(x,y)={A1,(x,yG)0,其他
则称(X,Y)在G上服从均匀分布,其中A为平面区域G的面积

注:(X,Y)在G上服从均匀分布,即(X,Y)落在G内各点是等可能的

二:二维正态分布

f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] f(x,y)= {1\over 2π\sigma_1 \sigma_2 \sqrt{1-\rho^2}} e^ {{-1 \over 2(1-\rho^2)} [{(x-\mu_1)^2\over \sigma_1^2} -2\rho {(x-\mu_1)(y-\mu_2)\over \sigma_1 \sigma_2} +{(y-\mu_2)^2\over \sigma_2^2} ]} f(x,y)=2πσ1σ21ρ2 1e2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]
− ∞ < x < + ∞ -\infty<x<+\infty <x<+ − ∞ < y < + ∞ -\infty<y<+\infty <y<+
在这里插入图片描述

连续型随机变量的边缘概率密度

设(X,Y)的概率密度为f(x,y),则
F X ( x ) = F ( x , + ∞ ) = ∫ − ∞ x [ ∫ − ∞ + ∞ f ( x , y ) d y ] d x , − ∞ < x < + ∞ F_X(x)=F(x,+\infty)=\int_{-\infty}^x[\int_{-\infty}^{+\infty}f(x,y)dy]dx,-\infty <x<+\infty FX(x)=F(x,+)=x[+f(x,y)dy]dx<x<+
由此可知,X是连续型随机变量
且其概率密度为
f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y , − ∞ < x < + ∞ f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy,-\infty<x<+\infty fX(x)=+f(x,y)dy<x<+
同理 Y:
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d y , − ∞ < x < + ∞ f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dy,-\infty <x <+\infty fY(y)=+f(x,y)dy<x<+
f X ( x ) , f Y ( y ) ,分别称为 ( X , Y ) 关于 X 和关于 Y 的边缘概率密度 f_X(x),f_Y(y),分别称为(X,Y)关于X和关于Y的边缘概率密度 fX(x),fY(y),分别称为(X,Y)关于X和关于Y的边缘概率密度

连续型随机变量的条件概率密度

1.条件分布函数
给定y,设对于任意的 ε>0 ,P{y<Y<=y+ε}>0
若对于任意实数x,极限
lim ⁡ ε − − > o + P { X < = x ∣ y < Y < = y + ε } \lim\limits_{ε-->o^+}P\{X<=x|y<Y<=y+ε\} ε−−>o+limP{X<=xy<Y<=y+ε}
存在,则称此极限值为在条件Y=y下随机变量X的条件分布函数,记为P{X<=x|Y=y}或 F X ∣ Y ( x ∣ y ) F_{X|Y}(x|y) FXY(xy)
类似地定义 F Y ∣ X ( y ∣ x ) F_{Y|X}(y|x) FYX(yx)

2.条件概率密度
设(X,Y)的分布函数为F(x,y),概率密度f(x,y)在点(x,y)处连续,边缘概率密度 f Y ( y ) 连续, f Y ( y ) > 0 f_Y(y)连续,f_Y(y)>0 fY(y)连续,fY(y)>0
在条件Y=y的条件分布函数和条件概率密度为
F X ∣ Y ( x ∣ y ) = ∫ − ∞ x f ( x , y ) f Y ( y ) d x F_{X|Y}(x|y)=\int_{-\infty}^x{f(x,y)\over f_Y(y)}dx FXY(xy)=xfY(y)f(x,y)dx
f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y)={f(x,y)\over f_Y(y)} fXY(xy)=fY(y)f(x,y)
类似可得
f Y ∣ X = f ( x , y ) f X ( x ) f_{Y|X}={f(x,y)\over f_X(x)} fYX=fX(x)f(x,y)
在这里插入图片描述

二维连续型随机变量(X,Y)的独立性

XY相互独立<---->f(x,y)= f X ( x ) f Y ( y ) f_X(x)f_Y(y) fX(x)fY(y)
在这里插入图片描述

二维随机变量的函数的分布

一.离散型随机变量函数的分布

e.g.1.
设(X,Y)的分布律为
在这里插入图片描述

(1)Z=X+Y
(2)Z=XY
(3)Z=max(X,Y)
(4)Z=min(X,Y)

(X,Y)-1,0(-1,1)(-1,2)(2,0)(2,1)(2,2)
Z=X+Y-101234
Z=XY0-1-2024
Z=max(X,Y)012222
0.20.30.10.10.10.2
Z=XY-2-1024
0,10.30.30.10.2

分布的可加性

如果XY相互独立服从同一分布族,其和X+Y扔服从该分布族,则称该分布族具有可加性
e.g.
二项分布,泊松分布 正态分布 卡方分布

二。连续型随机变量的函数分布

设(X,Y)的概率密度为f(x,y)求Z=g(X,Y)的分布
一般方法:分布函数法
设( X , Y )的概率密度为 f ( x , y ) ,求 Z = g ( X , Y ) 的分布 设(X,Y)的概率密度为f(x,y),求Z=g(X,Y)的分布 设(XY)的概率密度为f(x,y),求Z=g(X,Y)的分布
F Z ( z ) = P { Z < = z } = P { g ( X , Y ) < = Z } = P { ( X , Y ) ∈ D z } = ∫ ∫ D z f ( x , y ) d x d y = ∫ − ∞ z H ( u ) d u F_Z(z)=P\{Z<=z\}=P\{g(X,Y)<=Z\}=P\{(X,Y)∈D_z\}=\int\int\limits_{D_z} f(x,y)dxdy=\int_{-\infty}^zH(u)du FZ(z)=P{Z<=z}=P{g(X,Y)<=Z}=P{(X,Y)Dz}=Dzf(x,y)dxdy=zH(u)du
D z = ( x , y ) ∣ ( x , y ) ∈ g ( x , y ) < = z D_z={(x,y)|(x,y)∈g(x,y)<=z} Dz=(x,y)(x,y)g(x,y)<=z
f Z ( z ) = F Z ‘ ( z ) = H ( z ) f_Z(z)=F_Z^‘(z)=H(z) fZ(z)=FZ(z)=H(z)

1.Z=X+Y的分布

在这里插入图片描述
在这里插入图片描述

注:一定是Z=X+Y才能使用卷积公式,Z=ax+by不能直接这样代入

一般结论:
有限个相互独立的正态随机变量的线性组合仍然服从正态分布
X − N ( μ 1 , σ 1 2 ) , Y − N ( μ 2 , σ 2 ) 且相互独立,则 X + Y 扔服从正态分布,且 X + Y − N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) X - N(\mu_1,\sigma_1^2), Y-N(\mu_2,\sigma_2) 且相互独立,则X+Y扔服从正态分布, 且X+Y-N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) XN(μ1,σ12),YN(μ2,σ2)且相互独立,则X+Y扔服从正态分布,且X+YN(μ1+μ2,σ12+σ22)
若 X i − N ( μ i , σ 1 2 ) , ( i = 1 , 2..... n ) 且相互独立则 若X_i-N(\mu_i,\sigma_1^2),(i=1,2.....n)且相互独立则 XiN(μi,σ12),(i=1,2.....n)且相互独立则
∑ i = 1 n X i − − N ( ∑ i = 1 n μ i , ∑ i = 1 n σ i 2 ) \sum_{i=1}^nX_i--N(\sum_{i=1}^n\mu_i,\sum_{i=1}^n\sigma_i^2) i=1nXiN(i=1nμi,i=1nσi2)

三:最大值最小值分布

设X,Y是两个相互独立的随机变量 它们的分布函数分别是 F X ( x ) F_X(x) FX(x) F Y ( y ) F_Y(y) FY(y),求M=max{X,Y} N=min{X,Y}
的分布函数
对任意实数z
F m a x F_{max} Fmax(z)
=P{max{X,Y}<=z}
=p{X<=z,Y<=z}
=P{X<=z}P{Y<=z}
F m a x ( z ) = F X ( z ) ∗ F Y ( z ) F_{max}(z)=F_X(z)*F_Y(z) Fmax(z)=FX(z)FY(z)
F m i n ( z ) F_{min}(z) Fmin(z)
=P{min{X,Y}<=z}
=1-P{min(X,Y)>z}
=1-P{X>z,Y>z}
=1-P{X>z}P{Y>z}

F m i n ( z ) = 1 − [ 1 − F X ( z ) ] ∗ [ 1 − F Y ( z ) ] F_{min}(z)=1-[1-F_X(z)]*[1-F_Y(z)] Fmin(z)=1[1FX(z)][1FY(z)]

推广
X 1 , X 2 . . . . . . . X n 相互独立,其分布函数分别为 F X i ( x i ) X_1,X_2.......X_n相互独立,其分布函数分别为F_{X_i}(x_i) X1,X2.......Xn相互独立,其分布函数分别为FXi(xi)
则M=max{ X 1 , X 2 . . . . . . X n X_1,X_2......X_n X1,X2......Xn}
N=min{ X 1 , X 2 . . . . . X n X_1,X_2.....X_n X1,X2.....Xn}
F m a x ( z ) = ∏ i = 1 n F X i ( z ) F_{max}(z)=\prod_{i=1}^nF_{X_i}(z) Fmax(z)=i=1nFXi(z)
F m i n ( z ) = 1 − ∏ i = 1 n [ 1 − F X i ( Z ) ] F_{min}(z)=1-\prod_{i=1}^n[1-F_{X_i}(Z)] Fmin(z)=1i=1n[1FXi(Z)]
特别 ,相互独立且具有相同分布函数F(x)时,有
F m a x = [ F ( z ) ] n F_{max}=[F(z)]^n Fmax=[F(z)]n
F m i n = 1 − [ 1 − F ( z ) ] n F_{min}=1-[1-F(z)]^n Fmin=1[1F(z)]n
若 X是离散型随机变量,Y是连续型随机变量,且X和Y相互独立, 如何求Z=X+Y概率密度?
e.g. 设随机变量X服从参数为3/4的两点分布,随机变量Y服从参数为1的指数分布,X和Y相互独立 求Z=X+Y的分布
解:
F Z ( z ) = P Z < = z = P X + Y < = z F_Z(z)=P{Z<=z}=P{X+Y<=z} FZ(z)=PZ<=z=PX+Y<=z
=P{X=0}P{X+Y<=z|X=0}+P{X=1}P{X+Y<=z|X=1}
=P{X=0}P{X+Y<=z|X=0}+P{X=1}P{X+Y<=z|X=1}
=P{X=0}P{Y<=z}+P{X=1}P{Y<=z-1}
= F Y ( z ) / 4 + 3 F Y ( z − 1 ) / 4 F_{Y}(z)/4+3F_{Y}(z-1)/4 FY(z)/4+3FY(z1)/4

n维随机变量(略)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值