提示:笔者的电脑配置:RTX3060,所以训练时间大概5分钟就结束了
文章目录
文章参考 https://blog.csdn.net/m0_62237233/article/details/127328106,如有不解之处可以一起看
一、到Github上下载Yolov5源代码
点击Download下载到默认位置(随便哪里都行,建议放在D盘),记住位置
二、创建Conda中Yolov5的虚拟环境!!!
创建虚拟环境是因为整个过程容易出现神奇的错误,所以将环境隔离起来方便整个环境重装,笔者重装了4次才成功,不过相信在座各位一次就能过
1.官网安装Anaconda(已经安装过的请自行跳过)
点击Download,默认设置即可
2.命令行中创建所需名为Yolov5的python虚拟环境
python3.9 ,pytorch1.12.1,yolov5 v6.0
2.1创建python环境
打开一个powershell,输入以下代码,代码如下(示例):
conda create -n yolov5 python=3.9
2.2激活Yolov5环境并安装pytorch
conda activate Yolov5
conda install pytorch==1.12.1 torchvision torchaudio -c pytorch
2.3安装requirements中要求的库文件
cd到Yolov5的安装目录,之前下载下来记住的目录!!!!!
以下是笔者的内容,仅供参考
然后输入以下代码安装依赖库:
pip install -r requirements.txt
以上过程如果出现问题,那么就耐心等一下,或者挂一个梯子。
三、标记图像
1.下载labelimg软件
安装labellmg
下载labelImg地址:https://github.com/tzutalin/labelImg
下载后存放目录到yolov5同级下面
打开新的命令行窗口,启动yolov5环境,
conda activate yolov5
在yolov5环境中输入以下命令:
其中前三个是安装依赖库,最后才是安装软件
pip install PyQt5
pip install pyqt5-tools
pip install lxml
pip install labelimg
2.在yolov5文件夹下新建VOCData文件夹
3.在VOCData文件夹下新建Annotations和images文件夹
images:用于存放要标注的图片(jpg格式)
Annotations :用于存放标注图片后产生的内容(这里采用XML格式)
之后的部分参考https://blog.csdn.net/m0_62237233/article/details/127328106感觉讲的很清楚