- 费马小定理:
若 p p p 为素数 且 a , p a,p a,p 互素 ,则 a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1 \pmod p ap−1≡1(modp) - 欧拉定理:
欧拉函数 φ ( m ) \varphi (m) φ(m) 表示 1 1 1 到 m m m 中与 m m m 互素的个数
若 a , m a,m a,m 互素,则 a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi(m)} \equiv 1\pmod m aφ(m)≡1(modm)
遇到计算 1 2 ( m o d 10007 ) \frac{1}{2} \pmod {10007} 21<