目录
Adaboost人脸检测
基本原理
首先介绍一下Haar-like特征,Haar-like特征是一种基于矩形特征的图像描述方法。它通过在图像上定义一组简单的矩形区域,并计算这些区域内像素值的加权和或差值来提取特征。这些特征能够有效地捕捉图像中的局部对比度信息,例如边缘、线条和纹理等。可以类比理解为机器学习中人工设计的特征,注意,这种人为设计的特征越复杂,计算的成本就越高。
Haar-like特征可以分为边缘特征、中心特征、对角线特征以及线性特征。
(a)即为边缘特征,其用于检测目标图像在边缘上的变化信息,如人脸边缘与背景的灰度变化,人头发与人脸额头之间的灰度变化等;
(b)即为线性特征,其用于检测目标图像在水平以及垂直方向上的变化信息,如人的鼻梁两侧肤色要比鼻梁上的颜色深等;
(c)即为中心特征和对角线特征,其用于检测对角线上以及矩形模板外围和中心之间的变化信息,如人的眼睛比人脸的其他部分颜色要深,嘴巴要比其周围肤