【一起学】实时人脸识别项目(2)项目概述

目录

3 人脸图像预处理

4 人脸特征提取

5 匹配与识别

人脸识别数据集介绍

FER13 Dataset

常用数据集汇总


3 人脸图像预处理

        基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度矫正、噪声过滤等图像预处理。

主要预处理过程

        人脸对准(得到人脸位置端正的图像),人脸图像的光线补偿,灰度变换,直方图均衡化、归一化(取得尺寸一致,灰度取值范围相同的标准化人脸图像),几何校正、中值滤波(图片的平滑操作以消除噪声)以及锐化等。

4 人脸特征提取

        人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的,也称人脸表征,它是对人脸进行特征建模的过程。 

人脸特征提取的方法

        基于知识的表征方法(主要包括基于几何特征法和模板匹配法)︰根据人脸器官的形状描述以及它们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率、和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和他们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。

5 匹配与识别

        提取的人脸特征值数据与数据库中存贮的特征模板进行搜索匹配,通过设定一个阈值,将相似度与这一阈值进行比较,来对人脸的身份信息进行判断。

人脸识别衡量指标

(1)检测率:被正确检测到的人脸数目与原图像内包含的人脸数目的比值。检测率越高,表明检测系统对人脸的接受能力越强。  

 (2)误识率(或虚警率、误报率、误检率):被误检为人脸的非人脸子窗口的数目与原图像内被检测的所有非人脸子窗口数目的比值。检测率无法反映系统对非人脸的排除能力.有可能所有人脸都被检测到的同时有大量的非

### 使用 OpenCV 构建人脸识别系统的概述 构建一个人脸识别系统涉及多个阶段,包括图像采集、预处理、特征提取以及最终的分类或匹配。通过使用 Python 和 OpenCV 库可以实现这一目标[^2]。 #### 准备工作环境 为了开始项目开发,需安装必要的软件包: ```bash pip install opencv-python numpy ``` 这些工具提供了访问摄像头的能力并支持高效的矩阵运算操作,对于图像处理至关重要。 #### 获取训练样本集 收集用于训练模型的数据非常重要。可以从公开可用的人脸数据库下载图片作为初始资源,也可以自行拍摄照片来创建个性化的数据集合。确保每张图像都清晰地标记所属个体身份信息以便后续习过程能够区分不同对象之间的差异特性[^1]。 #### 预处理输入图像 在正式进入识别流程之前,通常要对面部区域做标准化调整——比如裁剪至固定大小、灰度化转换等措施以减少干扰因素影响准确性;另外还可以采用直方图均衡化方法改善光照条件不佳情况下造成的对比度过低问题。 #### 提取面部特征向量 OpenCV 支持多种算法来进行有效的表征描述子计算,其中最常用的是Eigenfaces(特征脸)、Fisherfaces 及 LBPH (局部二元模式直方图)。这里推荐初者尝试LBPH因为其参数设置相对直观易于理解而且性能表现良好适用于实时应用场景当中。 - **Local Binary Patterns Histograms (LBPH)** 是一种基于纹理分析的技术,在保持较低复杂度的同时可以获得较好的鲁棒性和泛化能力特别适合于非理想条件下(如角度变化较大, 表情各异) 的场景下进行稳定可靠的检测与验证任务执行. #### 训练识别器 一旦准备好所有前期准备工作之后就可以利用上述提到的方法之一去建立相应的预测模型了: ```python import cv2 recognizer = cv2.face.LBPHFaceRecognizer_create() images = [] # 存储读入的照片 labels = [] # 对应标签列表 for image_path in image_paths: gray_image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) images.append(gray_image) labels.append(label) recognizer.train(images, np.array(labels)) ``` 此段代码展示了如何初始化一个 `LBPHFaceRecognizer` 实例,并传入经过标注后的图像及其对应的类别编号完成一次完整的训练周期. #### 进行人脸识别 最后一步就是实际部署该模块到具体业务逻辑里边去了。当有新的待测样本来临时只需调用 predict 方法即可得到它可能属于哪一类的结果反馈: ```python predicted_label, confidence = recognizer.predict(test_image_gray) print(f"The face belongs to label {predicted_label} with a confidence of {confidence}") ``` 这段脚本说明了怎样把测试集中的一幅未知面孔传递给已经过充分锻炼过的机器习组件从而获得关于此人身份的最佳猜测连同置信水平一起返回出来供进一步决策参考之用.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值