目录
3 人脸图像预处理
基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度矫正、噪声过滤等图像预处理。
主要预处理过程
人脸对准(得到人脸位置端正的图像),人脸图像的光线补偿,灰度变换,直方图均衡化、归一化(取得尺寸一致,灰度取值范围相同的标准化人脸图像),几何校正、中值滤波(图片的平滑操作以消除噪声)以及锐化等。
4 人脸特征提取
人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的,也称人脸表征,它是对人脸进行特征建模的过程。
人脸特征提取的方法
基于知识的表征方法(主要包括基于几何特征法和模板匹配法)︰根据人脸器官的形状描述以及它们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率、和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和他们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。
5 匹配与识别
提取的人脸特征值数据与数据库中存贮的特征模板进行搜索匹配,通过设定一个阈值,将相似度与这一阈值进行比较,来对人脸的身份信息进行判断。
人脸识别衡量指标
(1)检测率:被正确检测到的人脸数目与原图像内包含的人脸数目的比值。检测率越高,表明检测系统对人脸的接受能力越强。
(2)误识率(或虚警率、误报率、误检率):被误检为人脸的非人脸子窗口的数目与原图像内被检测的所有非人脸子窗口数目的比值。检测率无法反映系统对非人脸的排除能力.有可能所有人脸都被检测到的同时有大量的非