【一起学】实时人脸识别项目(1)项目概述

目录

概述及应用

主要流程

1 人脸采集 

2 人脸检测


概述及应用

        人脸识别(Face Recognition)是一种依据人的面部特征(如统计或几何特征等),自动进行身份识别的一种生物识别技术,又称为面像识别、人像识别、相貌识别、面孔识别、面部识别等。通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。
        人脸识别利用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸图像进行一系列的相关应用操作。
        技术上包括图像采集、特征定位、身份的确认和查找等。特征定位,就是从照片中提取人脸中的特征,比如眉毛高度、嘴角等等,再通过特征的对比输出结果。


        应用可以在金融(实名认证、远程开户、刷脸取款)、安防(智慧城市、反恐行动主力、儿童安全守护)、医疗(“雪亮工程”、人员轨迹回放、对接门禁系统、对接公安视频监控、医警联动平台)等方面。


        功能需求上,实时的人脸识别应用需要能够在图像视频中找人口罩佩戴检测;面部特征捕捉疲劳检测;需要能够进行活体检测,表情识别;年龄性别预测等。

主要流程

         人脸检测是所有人脸研究的一个前提步骤,它的性能直接影响整个人脸图像应用系统得性能,因此是一个非常关键的步骤。它的任务是首先对由摄像机输入的图像进行分割,即把整幅图像分割成两部:一部分为人脸区域.另一部分为非人脸区域,然后进一步获取脸部信息,并对人脸的行为进行描述,进而完成对人脸识别的分析和理解。

1 人脸采集 

不同的人脸图像通过摄像镜头采集得到,比如静态图像、动态图像、不同的位置、不同表情等,当采集对象在设备的拍摄范围内时,采集设备会自动搜索并拍摄人脸图像。

人脸采集的主要影响因素:

图像大小:人脸图像过小会影响识别效果,人脸图像过大会影响识别速度。非专业人脸识别摄像头常见规定的最小识别人脸像素为60*60或100*10O以上。在规定的图像大小内,算法更容易提升准确率和召回率。图像大小反映在实际应用场景就是人脸离摄像头的距离。

图像分辨率:图像分辨率:越低的图像分辨率越难识别。图像大小综合图像分辨率,直接影响摄像头识别距离。现4K摄像头看清人脸的最远距离是10米,7K摄像头是20米。

光照环境:光照环境:过曝或过暗的光照环境都会影响人脸识别效果。可以从摄像头自带的功能补光或滤光平衡光照影响,也可以利用算法模型优化图像光线。

人脸遮挡:遮挡是指正面人脸图像中有眼镜、头发、围巾或者其他的配饰。在过去几年,主要致力于可控设置下的人脸识别;然而,在不可控制下的识别,像光照、表情和部分遮挡是需要考虑的问题。

采集角度:人脸相对于摄像头角度为正脸最佳。但实际场景中往往很难抓拍正脸。因此算法模型需训练包含左右侧人脸、上下侧人脸的数据。工业施工上摄像头安置的角度,需满足人脸与摄像头构成的角度在算法识别范围内的要求。

2 人脸检测

        在图像中准确标定出人脸的位置和大小,并把其中有用的信息挑出来(如直方图特征、颜色特征、模板特征、结构特征及Haar特征等),然后利用信息来达到人脸检测的目的,常用人脸关键点检测,即自动估计人脸图片上脸部特征点的坐标。

主流方法:

        基于检测出的特征采用Adaboost学习算法(一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法)挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
        viola-jones框架(性能一般速度尚可,适合移动端、嵌入式上使用),dpm(速度较慢),cnn(性能不错)。


作者每周更新栏目文章,和读者一起从原理剖析到代码实践,完整实现实时人脸识别项目。

若您对文章内容有疑问,或发现文章中存在错误,请您指出,谢谢!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值