2024全国大学生GIS应用技能大赛试题详解(上午题目)

作者:Lily

0 内容导读

锵锵锵。2024年全国大学生GIS应用技能大赛试题详解新鲜出炉啦~

参加了这次比赛的同学都知道,这次的题,更难。

今年的试题回归了上下午各一题的传统风格,但是每个题的难度以及复杂程度都较往年更大,题目更加灵活,所以几乎每个关键步骤都有多种解题思路和方法,对阅卷老师是个极大的挑战。

回归正题,今天起分上下两期解析试题。重申一下,我们尽可能把已知的方法告诉大家,如果同学们有更好的解题思路和方法,欢迎讨论。按照惯例,所有的演示都在GeoScene Pro软件中进行。

先来看上午的基础题。试题内容如下:

操作软件:GeoScene Pro 4.0


目录

作者:Lily

0 内容导读

1 整体解题思路

1.1 数据质量检查与入库

1.2 数据关联与条件查询

1.3 数据聚合与特征统计

1.4 数据精度评估与多源数据应用

1.5 人口特征制图

2 详细步骤

2.1 数据质量检查与入库

2.1.1 创建数据库

2.1.2 调整坐标系

2.1.3 数据入库

2.1.4 拓扑检查

2.2 数据关联与条件查询

2.2.1 查找邻域人口最多区县

2.2.2 查找每年都增长的区县

2.3 数据聚合与特征统计

2.3.1 数据聚合

2.3.2 查找与郑州市人口指标相似的区县

2.4 数据精度评估与多源数据应用

2.4.1 评估栅格数据误差

2.4.1.1 基于人口栅格数据生成1千米栅格 

2.4.1.2 基于矢量生成1千米格网数据

2.4.1.3 栅格比较 

2.4.2 计算千米网格精度老年人数量

2.5 人口特征制图

2.5.1 二维制图

2.5.2 三维制图

3 总结


1 整体解题思路

1.1 数据质量检查与入库

这一步共有4项子任务,按照题目要求,分为中间数据库(存储过程数据)和结果数据库(各任务结果数据),可以考虑将中间数据库设置为临时工作空间,方便存储过程中产生的数据。为county数据添加其地理坐标需要定义投影,根据数据真实位置选择合适投影,再将其他数据统一坐标系。

最后通过构建拓扑关系找到重叠面,得到错误面数量过多,观察出现错误的要素,发现问题分为三种,一种是完全重叠的要素,这种面积都比较大,有3个,第二种是飞地跟所在地重叠,第三种是要素之前确实存在少部分重叠的情况。这里我们只考虑删除第一种,完全重叠的。

1.2 数据关联与条件查询

Population表中包含经纬度信息,可以将该表转为带有人口属性的点,再通过空间连接,将人口统计数据挂接到county要素中。

要查询出人口数量比周围区县都要多的区县,有多种工具,可以使用面邻域工具,找到研究对象周围的区县,再比较研究对象与周围区县人口数量,找到符合要求的区县;类似的方法还可以使用生成空间权重矩阵工具,得到各要素间的空间关系,再比较研究对象与周围区县人口数量,找到符合要求的区县;还有稍微麻烦但是很好理解的方法,使用模型构建器,迭代循环要素查找其周围区县,并判断其是否人口比周围相邻区县多,将符合条件的要素输出即可。

1.3 数据聚合与特征统计

使用范围内汇总等工具,将地级市范围内的区县进行人口数量汇总。要探测人口高值集聚的热点区域和低值集聚的冷点区域,需要使用热点分析方法,使用优化的热点分析也可以。

要计算地市级男女性别比、育龄女性占比和老年人占比,首先要根据人口数量及各指标计算出各区县的男女人口数量、育龄人口数量以及老年人口数量,再进行范围内汇总得到地市级的男女人口数量、育龄人口数量以及老年人口数量,最后计算出男女性别比、育龄女性占比和老年人占比。

要找到与郑州市三个指标相似的前20个区域,可以借助相似性搜索,搜索出指标与郑州相似的城市,也可以按照欧氏距离的方式,求得标准差最小的城市当做与郑州相似的城市。具体的计算公式为

x、y、z为对应的三个指标。

1.4 数据精度评估与多源数据应用

要基于100米的人口模拟数据生成1000米精度的人口数据,不能直接使用重采样方法得到结果,(重采样可以简单理解为抽取100米精度的栅格直接放到1000米栅格上,值基本没有变化,这与我们想要的汇总统计1000米内的人口数量是不同的,)所以需要首先构建1000米大小的格网,再汇总格网内的所有栅格,(需要注意汇总时的像元大小保持默认),再对汇总后的栅格进行重采样;或者创建格网后,用表格统计分区统计各格网的人口数量,最后将格网转换成栅格。

要基于county数据生成1000米精度的人口数据,不能直接根据人口数量进行插值,原因在于插值的对象通常是密度、高度或者量级,所以在插值之前,需要先计算各区县的平均人口密度,将county数据转换成点, 再选择插值方法将包含人口密度属性的点进行插值,或者在计算完人口密度后,直接使用地统计向导中的面插值方法进行插值,得到1000米精度的人口数据。

再使用栅格计算器比较上述两者的差异。

要计算1000米精度的老年人口数量,已知1000米精度的人口数据,以及county图层中包含老年人占比, 将county图层转换为1000米精度的栅格,其栅格值为老年人占比,再使用栅格计算器1000米精度的人口数据*1000米精度的老年人占比得到结果。

1.5 人口特征制图

根据上述4个任务的成果,绘制地市级尺度专题图,注意指北针、比例尺、图例、标题等制图元素。

制作人口三维地图,将2020年人口数据进行拉伸后进行制图,三维图通常不要求制图元素。

整体的操作流程如下:

2 详细步骤

2.1 数据质量检查与入库

2.1.1 创建数据库

2.1.1.1 创建数据库

打开GeoScene Pro软件,目录视图中,新建结果文件夹,在结果文件夹上右键【新建】|【文件地理数据库】,新建两个数据库,依次命名为“temp_data.gdb”和“result_data.gdb”。

2.1.1.2 设置环境(非必须)

切换到【分析】菜单栏,点击【地理处理】|【环境】。

设置【当前工作空间】和【临时工作空间】均为temp_data.gdb。

图1 环境设置

2.1.2 调整坐标系

2.1.2.1 定义投影

Pro中加载county.shp数据。

点击【工具箱】|【数据管理工具】|【定义投影】,输入数据集或要素类为“county”,坐标系为“GCS_WGS_1984”。

图2 定义投影

2.1.2.2 投影

观察定义投影后的county图层,大致分布在东经112度左右。因此6度带中选择中央经线为111。

方法1:

点击【工具箱】|【数据管理工具】|【投影和变换】|【投影】,输入数据集或要素类为“county”,输出数据集要素类为“county”(路径默认为temp_data.gdb),输出坐标系为“CGCS2000 GK CM 111E”。

图3 投影设置

亦可以选择CGCS2000 GK Zone 19坐标系,二者的区别在于前者不带代号,后者带代号。

Tips:【投影】工具中【地理变换】参数上显示感叹号,表示设置该参数用于表示基准面变换,如果不设置该参数,运行结果可能不太准确,但是题目中没有提到具体的地理变换参数,这里选择不填。

方法2:

还可以使用【工具箱】|【数据管理工具】|【要素】|【复制要素】工具或者【工具箱】|【转换工具】|【转出至地理数据库】|【导出要素】工具,在【环境】中设置其“输出坐标系”为“CGCS2000 GK CM 111E”。

图4 导出要素

2.1.3 数据入库

Pro中加载city.shp及simulated_population.tif数据。

2.1.3.1 矢量入库

方法同2.1.2.2,这里不再赘述。

Tips输出坐标系可以直接选择与目标坐标系相同的图层。

2.1.3.2 投影栅格

点击【工具箱】|【数据管理工具】|【投影和变换】|【栅格投影】|【投影栅格】,输入栅格为“simulated_population.tif”,输出栅格数据集为“simulated_population”,输出坐标系为“CGCS2000 GK CM 111E”,其他参数保持不变。

图5 投影栅格

2.1.4 拓扑检查

2.1.4.1 创建要素数据集

点击【工具箱】|【数据管理工具】|【工作空间】|【创建要素数据集】,输出地理数据库为“temp_data.gdb”,要素数据集名称可自定义,坐标系为“CGCS2000_GK_CM_111E”。

图6 创建要素数据集

Tips也可以在目录视图中,找到temp_data.gdb,在其上右键“新建”,选择“要素数据集”,弹出【创建要素数据集】工具,二者功能完全相同。

2.1.4.2 导入要素类
方法1:

目录视图中,将temp_data.gdb中的county要素重命名为county2。

点击【工具箱】|【转换工具】|【转出至地理数据库】|【导出要素】工具,输入要素为“county2”,输出要素类定位到上一步中的topo数据集,并命名为“county”。

图7 导出要素

方法2:

在目录视图中,将county数据拖拽入topo数据集。

2.1.4.3 构建拓扑关系

在目录视图中,找到topo数据集,在其上右键“新建”,选择“拓扑”,弹出【创建拓扑向导】对话框。

要素类勾选county,添加规则选择“不能重叠(面)”。

图8 创建拓扑

等待创建拓扑完成。

2.1.4.4 验证拓扑

在目录视图中,找到topo数据集中的topo_Topology,右键选择验证,完成拓扑验证。

也可以使用【工具箱】|【数据管理工具】|【拓扑】|【拓扑验证】工具,功能相同。

2.1.4.5 删除重叠面

Pro中加载topo_Topology。

切换到【编辑】菜单栏,点击【管理编辑内容】|【拓扑】选择地理数据库中的topo_Topology,点击【错误检查器】,共计11438个错误。

图9 错误检查器

打开topo_Topology中面错误属性表,按照面积大小进行排序。

属性表中选择第一个要素,在错误检查器中选择修复建议为合并,选择合并到最大的要素。

图10 处理拓扑错误

同样的方式,修复3个的面积最大的错误面要素,这三个要素是完全重叠要素。还可以选中重叠的要素直接删除。

继续往下,在错误面要素属性表中选择面积最大的要素,会发现是魏都区位于建安区中间,这样的拓扑可以选择不处理。后续的拓扑错误均考虑不处理。

在【编辑】菜单栏,【管理编辑内容】中选择【保存】,对修复后的数据进行保存。

最终的county数据共计382个要素面。

2.2 数据关联与条件查询

2.2.1 查找邻域人口最多区县

2.2.1.1 挂接人口数据

1. 表转点

点击【工具箱】|【数据管理工具】|【要素】|【xy表转点】,输入表是population.CSV,输出要素类为“人口”,X字段为“CenterLon”,Y 字段为“CenterLat”,坐标系选GCS WGS 1984。

图11 xy表转点

2. 空间挂接

点击【工具箱】|【数据管理工具】|【连接和关联】|【添加空间连接】,目标要素为“county”,连接要素为“人口”,匹配选项选“包含”。

图12 添加空间连接

人口属性就挂接到county数据中。

其属性表部分截图如下

图13 挂接后county属性表(部分)

Tips也可以使用【分析工具】|【叠加分析】|【空间连接】工具,区别在于空间连接工具将会输出新要素类,添加空间连接工具不会。

2.2.1.2 查找比邻域人口多的区县
方法1:

1.点击【工具箱】|【数据管理工具】|【字段】|【计算字段】,输入表为“county”,字段名称(现有或新建)为“唯-ID”,字段类型为“短整型(16 位整型)”,表达式为唯-ID =

!county.OBJECTID!。

图14 计算字段

2.点击【工具箱】|【空间统计工具】|【空间关系建模】|【生成空间权重矩阵】|,输入要素类为“county”,唯- ID 字段为 “唯-ID”,输出空间权重矩阵文件指定其位置。空间关系的概念化选择“仅邻接边”,其余参数保持不变。

图15 生成空间权重矩阵

3.点击【工具箱】|【空间统计工具】|【实用工具】|【将空间权重矩阵转换为表】。

图16 将空间权重矩阵转换为表

打开权重结果表,表中包含唯一ID、NID(邻居ID),WEIGHT(权重大小)。

图17 权重表(部分)

4.点击【工具箱】|【数据管理工具】|【连接和关联】|【连接字段】,输入表为“权重”,输入连接字段为“NID”,连接表为“county”,连接表字段为“唯-ID”,选择传输字段为“Y2020”。目的是保证研究对象的邻居都挂接2020年人口。

图18 连接字段

权重表添加2020年人口后如下:

图19 权重表(部分)

Tips使用添加连接工具也可以。

5.点击【工具箱】|【分析工具】|【统计数据】|【汇总统计数据】,输入表为“权重”,输出表为“权重统计”,汇总字段为“Y2020”,统计类型是“最大值”,案例分组字段是“唯-ID”。这一步用来统计研究对象周围最大人口数量。

图20 汇总统计数据

6.点击【工具箱】|【数据管理工具】|【连接和关联】|【添加连接】,输入表为“county”,输入连接字段为“唯-ID”,连接表为“权重”,连接表字段为“唯-ID”。将county图层挂接上各要素周围最大人口数。

图21 添加连接

7.点击【工具箱】|【转换工具】|【转出至地理数据库】|【导出要素】工具,将county图层导出至result_data.gdb数据库,名称保持不变。

8.点击【工具箱】|【数据管理工具】|【字段】|【计算字段】,输入表为“county”,字段名称(现有或新建)为“人口最大”,字段类型为“短整型(16 位整型)”,表达式为人口最大= max(!Y2020!,!MAX_county_AddSpatialJoin_Y2020_1!)

代码为

def max(a,b):    if (a>b):        return 1    else:        return 0

图22 计算字段

结果共有39个区县比邻县人口数量多。具体分布如下:

图23 人口比接壤区县多的区县分布

方法2:

点击【工具箱】|【分析工具】|【邻近分析】|【面邻域】,输入要素为“county”,输出表为“county邻域”,勾选“包括区域重叠”和“包括邻域关系的两侧”。

图24 面邻域

其表结构如下:

图25 county邻域表(局部)

Src_OBJECTID字段表示研究对象ID,nbr _OBJECTID字段表示邻近对象ID。

后续步骤与方法1的4-8不相同,这里就不在赘述。

方法3:

点击【工具箱】|【分析工具】|【邻近分析】|【生成近邻表】,输入要素为“county”,邻近要素为“county”,输出表为“county近邻”,搜索半径为0米,取消勾选“进查找最近的要素”。

图26 生成近邻表

其表结构如下:

图27 County近邻表(局部)

IN_FID字段表示研究对象ID ,NEAR_FID字段表示邻近对象ID。

后续步骤与方法1的4-8不相同,这里就不在赘述。

PS:方法二和方法三计算出来的邻近要素数量与方法一稍有出入,这跟原始数据有关,均不影响任务的最后结果。

方法4:

选择模型构建器,构建两个模型,子模型用于使用迭代要素选择遍历每一个要素,然后判断其周围区县人口是否大于当前要素,对符合条件的进行输出,主模型对输出的要素进行合并。

图28 子模型

主模型:

图29 主模型

2.2.2 查找每年都增长的区县

方法1:

点击【工具箱】|【数据管理工具】|【字段】|【计算字段】,输入表为“county”,字段名称(现有或新建)为“trend_type”,字段类型为“短整型(16 位整型)”,表达式为trend_type =trend(各年人口)

代码为

def  trend(a,b,c,d,e,f,g,h,i,j):  if (a<b<c<d<e<f<g<h<i<j):    return 1  else:     return 0

图30 计算字段

方法2:

1.点击【工具箱】|【数据管理工具】|【图层和表视图】|【按属性选择图层】,输入图层为“county”,切换到SQL语句模式,

SQL语句如下:

Y2011 < Y2012 AND  Y2012 < Y2013 AND  Y2013 < Y2014 AND  Y2014 < Y2015 AND  Y2015 < Y2016 AND  Y2016 < Y2017 AND  Y2017 < Y2018 AND  Y2018 < Y2019 AND  Y2019 < Y2020

图31 按属性选择图层

2.确保符合上述条件的要素被选中,点击【工具箱】|【数据管理工具】|【字段】|【计算字段】,输入表为“county”,字段名称(现有或新建)为“trend_type”,字段类型为“短整型(16 位整型)”,表达式为trend_type=1。

图32 计算字段

2.3 数据聚合与特征统计

2.3.1 数据聚合

2.3.1.1 地级市人口统计
方法1:

点击【工具箱】|【分析工具】|【统计数据】|【范围内汇总】,输入面为“city”,输入汇总要素为“county”,输出要素类为“city”(输出至result_data.gdb中),汇总字段依次选择2011-2020年人口数据,统计数据为“总和”,取消勾选“添加形状汇总属性”。

图33 范围内汇总

其结果属性表如下:

图34 city属性表(局部)

方法2:

1.点击【工具箱】|【数据管理工具】|【连接和关联】|【添加空间连接】,目标要素为“county”,连接要素为“city”,匹配选项选“最大重叠”。

图35 添加空间连接

2.点击【工具箱】|【分析工具】|【统计数据】|【汇总统计数据】,输入表为“county”,输出表为“city人口”,统计字段依次选择2011-2020年人口数据,统计类型为“总和”,案例分组字段为name字段(案例分组字段也可使用code字段)。

图36 汇总统计数据

     结果如下:

图37 City属性表(局部)

3.点击【工具箱】|【数据管理工具】|【连接和关联】|【连接字段】,输入表为“city”,输入连接字段为“name”,连接表为“city人口”,连接表字段为“name”,选择传输字段依次选择2011-2020年人口数据。

图38 连接字段

PS:上述两种方法统计出来的结果有稍微不同,原因在于city和county两个图层数据不是完全包含的空间关系,两种方法都是正确的。

2.3.1.2 冷热点分析
方法1:

点击【工具箱】|【空间统计工具】|【聚类分布制图】|【热点分析】,输入要素类为“city”,输入字段为“Y2011”,输出要素类为“人口2011年热点”,其他参数保持不变。

图39 热点分析

同样的方法计算2012年与2013年热点情况。最终结果如图。

图40 2011-2023年热点分析结果

2.3.2 查找与郑州市人口指标相似的区县

2.3.2.1 各区县各类人口统计

点击【工具箱】|【数据管理工具】|【字段】|【计算字段】,输入表为“county”,字段名称(现有或新建)为“老年人口”,字段类型为“长整型(32 位整型)”,表达式为老年人口=int(!county.Y2020! * !population_census.csv.F65岁及以上人口比重_百分比_!/100)。

图41 计算字段

同样的方法计算育龄人口及女性人口数量。

图42 计算字段

部分数据结果如下:

图43 county属性表(局部)

2.3.2.2 各地市各类人口汇总

可参考2.3.1.1中的方法对各地市各类人口进行汇总,步骤不再赘述。

汇总后各类人口数量如下:

图44 city属性表(局部)

PS:使用范围内汇总的结果可能与上述结果稍有出入,都是正确的。

2.3.2.3 计算各地市各类指标

点击【工具箱】|【数据管理工具】|【字段】|【计算字段】,输入表为“city”,字段名称(现有或新建)为“老年人占比”,字段类型为“浮点型(32 位浮点型)”,表达式为老年人占比= !sum_老年人口! / !SUM_county_Y2020!。

图45 计算字段

同样的方法计算育龄女性占比及男女性别比率。

图46 计算字段

汇总后各类指标如下:

图47 city属性表(局部)

2.3.2.4 找到相似地市

选中city图层中的郑州市,导出该要素。

【工具箱】|【转换工具】|【转出至地理数据库】|【导出要素】工具,输入要素为city,输出要素类为郑州市。

方法1:

【工具箱】|【空间统计工具】|【聚类分布制图】|【相似性搜索】工具,要匹配的输入要素为郑州市,候选要素为city,输出要素为“与郑州相似地市”,结果数选20,感兴趣属性勾选“老年人占比”、“育龄女性占比”、“男女性别比率”。

图48 相似性搜索

即可得到与之最相似的城市分布如下图。

图49 相似性结果

颜色越深越匹配,红色为完全匹配的郑州市本身。

方法2:

使用标准差或者欧式距离的方法判断哪个城市最接近。

1.点击【工具箱】|【数据管理工具】|【字段】|【计算字段】,输入表为“city”,字段名称(现有或新建)为“相似性”,字段类型为“浮点型(32位浮点型)”,表达式为相似性 =

math.sqrt((!老年人占比!-0.09771474) *(!老年人占比!-0.09771474) +(!育龄女性占比!-0.26271537)*(!育龄女性占比!-0.26271537) +(!男女性别比率!-1.04367983)*(!男女性别比率!-1.04367983) )

图50 计算字段

2. 点击【工具箱】|【数据管理工具】|【常规】|【排序】,输入数据集为“city”,输出数据集为“city排序”,排序字段为“相似性”,排序方法为“升序”。

图51 排序

即可得到与郑州相似的城市排名。

图52 city排序属性表(局部)

2.4 数据精度评估与多源数据应用

2.4.1 评估栅格数据误差

Pro中加载simulated_population栅格数据。

2.4.1.1 基于人口栅格数据生成1千米栅格 
方法1:

1.点击【工具箱】|【数据管理工具】|【采样】|【创建渔网】,输出要素类为“格网1000米”,模板范围为“simulated_population”,像元宽度和高度为“1000”,几何类型选择“面”,环境中设置输出坐标系为“CGCS2000_GK_CM_111E”。

图53 创建渔网

2.点击【工具箱】|【空间分析工具】|【区域分析】|【分区统计】,输入栅格数据或要素区域数据为“格网1000米”,区域字段为“OID”,输入赋值栅格为“simulated_population”,输出栅格为“county人口模拟”,统计类型为“总和”。在环境设置中,设置掩膜以及处理范围为“simulated_population”。

图54 分区统计

PS:这里不能直接在工具里设置像元大小,工具中的像元大小是重采样得到的,跟期望结果不符。

3.点击【工具箱】|【数据管理工具】|【栅格处理】|【重采样】,输入栅格为“county人口模拟1000米”,x为“1000”,y为“1000”。

重采样

该方法得到的栅格范围如下:

图55 county人口模拟1000米

方法2 :

1.同方法1一样,首先创建渔网。

2.使用【工具箱】|【空间分析工具】|【区域分析】|【以表格显示分区统计】,输入栅格数据或要素区域数据为“格网1000米”,区域字段为“OID”,输入赋值栅格为“simulated_population”,输出表为“网格人口模拟”,统计类型为“总和”。

图56 以表格显示分区统计

3.点击【工具箱】|【数据管理工具】|【连接和关联】|【添加连接】,输入表为“格网1000米”,输入连接字段为“OID”,连接表为“网格人口模拟”,连接表字段为“OID”,取消勾选“保留所有目标要素”,将simulated_population图层范围内的所有格网挂接上人口属性。

图57 添加连接

4.点击【工具箱】|【转换工具】|【转为栅格】|【面转栅格】,输入要素为“格网1000米”,值字段为“SUM”,输出栅格数据集为“格网人口模拟1000米”,像元大小为1000。

图58 面转栅格

该方法得到的栅格数据范围如下:

图59 格网人口模拟1000米

不同的方法得到的结果会略有差异。

2.4.1.2 基于矢量生成1千米格网数据
方法1:

1.点击【工具箱】|【数据管理工具】|【字段】|【计算字段】,输入表为“county”,字段名称(现有或新建)为“各区县人口密度”,字段类型为“浮点型(32 位浮点型)”,表达式为各区县人口密度 = !county.Y2020! / !county.Shape_Area!*1000000,单位为每平方千米人口数量。

图60 计算字段

2.点击【工具箱】|【数据管理工具】|【要素】|【要素转点】,输入要素为“county”,输出要素类为“county中心点”,勾选“内部”。

图61 要素转点

3.点击【工具箱】|【空间分析工具】|【插值分析】|【克里金法】,输入点要素为“county中心点”,Z 值字段为“各区县人口密度”,输出表面栅格为“county人口插值1000米”,输出像元大小为1000,环境设置中,掩膜、捕捉栅格以及处理范围都选择“county人口模拟1000米”,其余参数保持不变。

图62 克里金插值

插值后结果分布如下:

图63 county人口插值1000米

方法2:

1.同方法1一样计算各区县人口密度。

2.【分析】菜单栏中,点击【工作流】|【地统计向导】,选择【面插值】方法、

输入数据集 1为“平均值”,源数据集为“county”,值字段为“各区县人口密度”。点击完成。

图64 面插值

得到面插值分析结果,结果为地统计图层,非栅格格式。

3.点击【工具箱】|【地统计分析工具】|【使用地统计图层】|【GA图层转栅格】,输入地统计图层为“面插值”,输出栅格为“county人口面插值1000米”,输出像元大小为1000,环境设置中,掩膜、捕捉栅格以及处理范围都选择“county人口模拟1000米”。

图65 GA图层转栅格

面插值结果如下:

图66 county人口面插值1000米

2.4.1.3 栅格比较 

点击【工具箱】|【空间分析工具】|【地图代数】|【栅格计算器】,算法为"county人口模拟1000米" - "county人口插值1000米",输出栅格为“county人口误差”。

图67 栅格计算器

得到最终的误差范围如下:

图68 人口误差

Tips也可以使用【空间分析工具】|【数学分析】|【减】运算,实现计算误差的功能。

注意:上述计算过程中,任意工具参数的不同都可能导致分析结果有所差别,只要是合理的就可以。

2.4.2 计算千米网格精度老年人数量

1.点击【工具箱】|【转换工具】|【转为栅格】|【面转栅格】,输入要素为“county”,值字段为“F65岁及以上人口比重_百分比_”,输出栅格数据集为“老年人口占比”,像元大小为1000。

图69 面转栅格

2.点击【工具箱】|【空间分析工具】|【地图代数】|【栅格计算器】,算法为"老年人口占比" *  "county人口模拟1000米" /100,输出栅格为“老年人口1000米”。

图70  栅格计算器

老年人口范围如下:

图71 老年人口1000米

2.5 人口特征制图

2.5.1 二维制图

在Pro内容列表中,仅保留city图层可见,符号系统中选择分级色彩或者唯一值,字段选择Y2020,选择适当的配色方案及间断方法。

新建布局,选择自定义布局大小。

将目录中的地图直接拖拽至布局中。设置左下方的比例尺为1: 7,500,000(可自定义)。

添加名称、指北针、比例尺以及图例。

在共享菜单栏中,选择导出布局。导出PNG、PDF等格式图片。分辨率最高设为300DPI。效果如下图:

图72 2020年人口分布图

同样的方式导出男女比率分布图、1000 米网格老年人数量分布图、育龄女性比率分布图。

图73 人口特征子图

2.5.2 三维制图

【插入】菜单栏中,【工程】|【新建地图】|【新建局部场景】,打开局部场景。

将挂接了2020年区县人口的county数据,加载进局部场景。

【要素图层】菜单栏中,【拉伸】|【类型】|【基本高度】,字段选择“Y2020”。

效果如下图所示:

图74 三维人口分布效果

3 总结

上午的内容详解就到这里,总结来说,基础的操作如数据入库坐标转换拓扑检查以及制图等部分内容都有所涉及,难度与往年持平。但是在空间分析上,需求更加多样,例如查找相似性这样的任务,之前从未出现过;同时题目也更加灵活,采用不同的分析方法得到的结果都有可能不同,这也说明在实际应用时,针对同一个目标,无论是采用何种方法,只要能解决问题就行,不光需要定量分析,定性分析同样很重要;另外,不能想当然的使用工具,以重采样为例,要制作低分辨率的栅格时,需要了解栅格所代表的信息,再考虑是否能直接使用重采样工具,每一个工具使用之前,都需要判断其使用前提以及能够解决的问题与我们想要实现的目标是否一致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值