【AtCoder初学者竞赛 300 D - AABCC】

该文章是一个关于AtCoder初学者竞赛300D-AABCC的问题,要求找出所有小于或等于给定数N的正整数,这些数可以表示为三个质数a,b,c的平方乘积(a<b<c)。程序使用了素数筛法和嵌套循环来计算满足条件的组合数。
摘要由CSDN通过智能技术生成


题目链接D - AABCC


D - AABCC

在这里插入图片描述

问题陈述
有多少个不大于N的正整数可以用a^2 bc^2表示,其中有三个质数a,b和c,使得a<b<c?

约束
N是满足300≤N≤10^12的整数。

输入
输入来自标准输入,格式如下:
N

输出
将答案打印为整数。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 316228; // sqrt(10^12)

// 筛法求素数
vector<int> primes;
bool isPrime[MAXN+1];
void sieve()
{
    fill(isPrime, isPrime+MAXN+1, true);
    isPrime[0] = isPrime[1] = false;
    for (int i = 2; i <= MAXN; i++) {
        if (isPrime[i]) {
            primes.push_back(i);
            for (ll j = (ll)i*i; j <= MAXN; j += i) {
                isPrime[j] = false;
            }
        }
    }
}

// 计算a^2 * b * c^2小于等于n的方案数
ll count(ll n) 
{
    ll res = 0;
    for (int i = 0; i < primes.size(); i++)
    {
        ll a = primes[i];
        if (a*a*a*a > n) break; // a^4已经大于n了,后面的b和c不可能满足条件
        for (int j = i+1; j < primes.size(); j++) {
            ll b = primes[j];
            if (a*b*b*b > n) break; // a^2 * b^3已经大于n了,后面的c不可能满足条件
            for (int k = j+1; k < primes.size(); k++) 
            {
                ll c = primes[k];
                ll val = a*a*b*c*c;
                if (val > n) break; // a^2 * b * c^2已经大于n了,后面的c不可能满足条件
                res++;
            }
        }
    }
    return res;
}

int main() 
{
    sieve();
    ll n;
    cin >> n;
    cout << count(n) << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值