题目1:单链表
实现一个单链表,链表初始为空,支持三种操作:
向链表头插入一个数;
删除第 k 个插入的数后面的数;
在第 k 个插入的数后插入一个数。
现在要对该链表进行 M 次操作,进行完所有操作后,从头到尾输出整个链表。
注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:
H x,表示向链表头插入一个数 x。
D k,表示删除第 k 个插入的数后面的数(当 k 为 0 时,表示删除头结点)。
I k x,表示在第 k 个插入的数后面插入一个数 x(此操作中 k 均大于 0)。
输出格式
共一行,将整个链表从头到尾输出。
数据范围
1≤M≤100000
所有操作保证合法。
输入样例:
10
H 9
I 1 1
D 1
D 0
H 6
I 3 6
I 4 5
I 4 5
I 3 4
D 6
输出样例:
6 4 6 5
#include <iostream>
using namespace std;
const int N = 100010;
//head为头结点
//e为节点的值
//ne为节点指向的下一个地址
//idx表示当前正在处理那个节点
int head, e[N], ne[N],idx;
//节点的初始化
void init()
{
head = -1;
idx = 0;
}
//在头结点后添加节点x
void add_to_head(int x)
{
ne[idx] = head;
head = idx;
e[idx] = x;
idx++;
}
//在k节点后面添加节点x
void insert(int k, int x)
{
ne[idx] = ne[k];
ne[k] = idx;
e[idx] = x;
idx++;
}
//删除k节点后面的一个节点
void remove(int k)
{
ne[k] = ne[ne[k]];
}
int main()
{
init();
int m;
cin >> m;
while (m--)
{
char op;
cin >> op;
int k, x;
if (op == 'H')
{
cin >> x;
add_to_head(x);
}
else if ( op == 'D')
{
cin >> k;
if (k == 0) head = ne[head];
remove(k-1);
}
else
{
cin >> k >> x;
insert(k-1,x);
}
}
for (int i = head; i != -1; i = ne[i])
cout << e[i] << " ";
return 0;
}
小细节
为什么是k-1 ?
可以这样理解,,初始化的时候 idx = 0;;当进行插入操作的时候 会有一个idx++的操作,所以这样写的代码的单链表会如下图head -> 0 -> 1 -> 2
删除头节点 其实就是让head指向 head指向节点的下一个节点
即为 head = ne[head];
题目2:双链表
实现一个双链表,双链表初始为空,支持 5 种操作:
在最左侧插入一个数;
在最右侧插入一个数;
将第 k 个插入的数删除;
在第 k 个插入的数左侧插入一个数;
在第 k 个插入的数右侧插入一个数
现在要对该链表进行 M 次操作,进行完所有操作后,从左到右输出整个链表。
注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:
L x,表示在链表的最左端插入数 x。
R x,表示在链表的最右端插入数 x。
D k,表示将第 k 个插入的数删除。
IL k x,表示在第 k 个插入的数左侧插入一个数。
IR k x,表示在第 k 个插入的数右侧插入一个数。
输出格式
共一行,将整个链表从左到右输出。
数据范围
1≤M≤100000
所有操作保证合法。
输入样例:
10
R 7
D 1
L 3
IL 2 10
D 3
IL 2 7
L 8
R 9
IL 4 7
IR 2 2
输出样例:
8 7 7 3 2 9
#include <iostream>
using namespace std;
const int N = 100010;
int l[N], r[N], e[N],idx;
//初始化
void init()
{
//0表示左端点,1表示右端点
r[0] = 1, l[1] = 0;
//因为0和1已经被占用 idx从2开始
idx = 2;
}
//将第 k 个插入的数删除;
void remove(int k)
{
r[l[k]] = r[k];
l[r[k]] = l[k];
}
//在第 k 个插入的数右侧插入一个数
void add(int k, int x)
{
e[idx] = x;
r[idx] = r[k];
l[idx] = k;
l[r[k]] = idx;
r[k] = idx;
idx++;
}
int main()
{
int m,x,k;
cin >> m;
init();
while (m--)
{
string op;
cin >> op;
if (op == "L")
{
cin >> x;
add(0, x);
}
else if (op == "R")
{
cin >> x;
add(l[1], x);
}
else if (op == "D")
{
cin >> k;
remove(k + 1);
//第k个插入点的坐标是k+1
}
else if (op == "IL")
{
cin >> k >> x;
add(l[k+1], x);
}
else if (op == "IR")
{
cin >> k >> x;
add(k + 1, x);
}
}
for (int i = r[0]; i != 1; i = r[i])
cout << e[i] << " ";
return 0;
}