P1440 求m区间内的最小值

求m区间内的最小值

题目描述

一个含有 n n n 项的数列,求出每一项前的 m m m 个数到它这个区间内的最小值。若前面的数不足 m m m 项则从第 1 1 1 个数开始,若前面没有数则输出 0 0 0

输入格式

第一行两个整数,分别表示 n n n m m m

第二行, n n n 个正整数,为所给定的数列 a i a_i

这是一个经典的区间选择问题,可以通过排序和滑动窗口的思想解决。以下是解决问题的基本思路以及C语言代码示例: --- ### **解题思路** 1. 将所有输入的正整数按升序排列。 2. 使用双指针法(即滑动窗口),维护一个满足条件的最大长度区间的左右边界 `left` 和 `right`: - 如果当前右端点元素(数组中最大值)除以左端点元素(数组中最小值)小于等于 `p`,则该区间是一个合法的“完美数列”。 - 否则移动左指针缩小范围,直到再次找到符合条件的区间为止。 3. 遍历过程中记录并更新最长的合法区间。 --- ### **C语言代码实现** ```c #include <stdio.h> #include <stdlib.h> // 比较函数用于qsort排序 int compare(const void *a, const void *b) { return (*(int *)a - *(int *)b); } int maxPerfectSequence(int arr[], int n, int p) { if (n == 0) return 0; // 排序数组 qsort(arr, n, sizeof(int), compare); int left = 0; int maxLength = 1; // 至少有一个数字 for (int right = 0; right < n; ++right) { while (arr[right] > arr[left] * p) { // 移动左指针直至满足条件 left++; } maxLength = (right - left + 1 > maxLength) ? (right - left + 1) : maxLength; } return maxLength; } int main() { int n, p; printf("请输入正整数的数量 n 和参数 p: "); scanf("%d %d", &n, &p); int* arr = (int*)malloc(n * sizeof(int)); printf("请输入 %d 个正整数:\n", n); for (int i = 0; i < n; ++i) { scanf("%d", &arr[i]); } int result = maxPerfectSequence(arr, n, p); printf("能够组成的最长完美数列的长度为:%d\n", result); free(arr); // 释放内存 return 0; } ``` --- ### **运行例子** #### 输入: ``` 请输入正整数的数量 n 和参数 p: 6 2 请输入 6 个正整数: 5 7 9 4 8 6 ``` #### 输出: ``` 能够组成的最长完美数列的长度为:4 ``` **解释**: 数组 `[4, 5, 6, 8]` 的最大值为 `8`,最小值为 `4`,且 `8 / 4 <= 2`,所以它是最长的一个完美序列。 --- ### **复杂度分析** - 时间复杂度:O(n log n),主要是因为需要对数组进行排序。 - 空间复杂度:O(1),只用了常量级别的额外空间(忽略输入存储的空间开销)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少年负剑去

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值