例1
规定实数集R上的子集族证明是R上的一个拓扑
Proof:
1.
2.
3.
例2
R上规定例1中的拓扑,子集, 求
设A是X的子集,
内点、邻域:
,则x是A的一个内点,A是x的一个领域
聚点:x的每个邻域都含有
中的点,则称x为A的聚点
(聚点定义中的邻域可以改为开邻域,依据邻域的定义显然)
导集:A的所有聚点的集合,记A′
闭包:
例3
度量空间中,记,证明
是闭集。举例说明
不一定成立。
Proof:
例4
设Y是拓扑空间X的子空间,,证明:在X中,x是A的聚点
在Y中,x是A的聚点
Proof:
例5
若拓扑空间X的子集A与B互为余集,则与
互为余集
Proof:
例6
设X是拓扑空间,,记
分别为B在A中的闭包和内部,
分别为B在X中的闭包和内部,证明:
(1)
Proof:
(2)
Proof: