平面曲线法向量定义理解

摘记一段关于平面曲线的法向量的理解思路

F ( x , y ) = 0 F(x,y)=0 F(x,y)=0

全微分, F x d x + F y d y = 0 F_xdx+F_ydy=0 Fxdx+Fydy=0

然后发现这个式子很像是两个向量点乘的形式, ( F x , F y ) ⋅ ( d x , d y ) = 0 (F_x,F_y)\cdot(dx,dy)=0 (Fx,Fy)(dx,dy)=0

把一点放大来看,那么该点处非常小的范围近似看成一个直线(切线)

( d x , d y ) (dx,dy) (dx,dy)就是在这个切线上的向量,

所以 ( F x , F y ) (F_x,F_y) (Fx,Fy)垂直这个切线,也就是法向量

对于空间平面来说,也是类似的想法:
F x d x + F y d y + F z d z = 0 F_xdx+F_ydy+F_zdz=0 Fxdx+Fydy+Fzdz=0
⇒ ( F x , F y , F z ) ⋅ ( d x , d y , d z ) = 0 \Rightarrow(F_x,F_y,F_z)\cdot(dx,dy,dz)=0 (Fx,Fy,Fz)(dx,dy,dz)=0

即,法向量 n ⃗ = ( F x , F y , F z ) \vec{n}=(F_x,F_y,F_z) n =(Fx,Fy,Fz)

这也就是为什么对应一般式的平面方程 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0 ,

其法向量就是 n ⃗ = ( F x , F y , F z ) = ( A , B , C ) \vec{n}=(F_x,F_y,F_z)=(A,B,C) n =(Fx,Fy,Fz)=(A,B,C)

### 回答1: 首先,我们要求出曲线在点(-1,1)处的切线方程。为此,我们可以使用隐函数求导法。 将曲线方程对x求导,得到: 2x + 3y dx/dy + 0 = 0 化简可得: dx/dy = -(2x + 3y) / (6y + x) 在点(-1,1)处,代入x=-1,y=1,得到: dx/dy = -1 / 3 因此,在点(-1,1)处,曲线的切向量为(1,-3)(指向右侧)。 接下来,我们要求出曲线在点(-1,1)处的法向量。由于切向量(1,-3)和法向量垂直,因此可以将切向量逆时针旋转90度得到法向量。旋转公式为: [x' y'] = [-y x] 将切向量(1,-3)代入,可得法向量为(3,1)(指向上侧)。 ### 回答2: 首先,我们计算平面曲线x² + 3xy + 4y² = 2在点(-1, 1)处的切向量。 1. 切向量的定义曲线在该点的切线方向。为了找到切向量,我们需要求曲线在该点的导数。 先对曲线方程两边同时求导,得到: 2x + 3y + 3x dy/dx + 8y dy/dx = 0 化简得: (3x + 8y) dy/dx = -2x - 3y dy/dx = (-2x - 3y) / (3x + 8y) 将点(-1, 1)代入得: dy/dx = (-2(-1) - 3(1)) / (3(-1) + 8(1)) = (2 - 3) / (-3 + 8) = -1/5 切向量的斜率等于导数的值,所以切向量的斜率为 -1/5。因为切线与x轴的夹角是切向量斜率的反正切值,所以切线与x轴的夹角为 arctan(-1/5) ≈ -11.31°。 由于切向量指向右侧,我们可以得出切向量为(1, -1/5)。 2. 法向量定义是与切向量垂直的向量。为了找到法向量,我们需要求切向量的垂直向量。 由切向量的斜率为 -1/5,通过一般垂直向量的特性,我们可以得出法向量的斜率为 5/1 = 5。 因为法向量指向上侧,所以法向量为(1, 5)。 综上所述,平面曲线x² + 3xy + 4y² = 2在点(-1, 1)处的切向量为(1, -1/5),法向量为(1, 5)。 ### 回答3: 首先,我们需要求出平面曲线x² + 3xy + 4y² = 2在点(-1, 1)处的切线方程。 1. 求切向量: 导数方法:对方程两边求偏导数,得到2x + 3y + 3xdy/dx + 8ydy/dx = 0。 将点(-1, 1)代入,得到2(-1) + 3(1) + 3(-1)dy/dx + 8(1)dy/dx = 0。 化简得到-2 + 3 - 3dy/dx + 8dy/dx = 0,进一步化简得到5dy/dx = -1,即dy/dx = -1/5。 因此,在点(-1, 1)处指向右侧的切向量的斜率为-1/5。 2. 求法向量法向量垂直于切线,因此斜率相乘为-1。由切向量的斜率为-1/5,可得法向量的斜率为5。 在点(-1, 1)处指向上侧的法向量的斜率为5。 综上所述,平面曲线x² + 3xy + 4y² = 2在点(-1, 1)处指向右侧的切向量的斜率为-1/5,指向上侧的法向量的斜率为5。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值