摘记一段关于平面曲线的法向量的理解思路
F ( x , y ) = 0 F(x,y)=0 F(x,y)=0
全微分, F x d x + F y d y = 0 F_xdx+F_ydy=0 Fxdx+Fydy=0
然后发现这个式子很像是两个向量点乘的形式, ( F x , F y ) ⋅ ( d x , d y ) = 0 (F_x,F_y)\cdot(dx,dy)=0 (Fx,Fy)⋅(dx,dy)=0
把一点放大来看,那么该点处非常小的范围近似看成一个直线(切线)
而 ( d x , d y ) (dx,dy) (dx,dy)就是在这个切线上的向量,
所以 ( F x , F y ) (F_x,F_y) (Fx,Fy)垂直这个切线,也就是法向量
对于空间平面来说,也是类似的想法:
F
x
d
x
+
F
y
d
y
+
F
z
d
z
=
0
F_xdx+F_ydy+F_zdz=0
Fxdx+Fydy+Fzdz=0
⇒
(
F
x
,
F
y
,
F
z
)
⋅
(
d
x
,
d
y
,
d
z
)
=
0
\Rightarrow(F_x,F_y,F_z)\cdot(dx,dy,dz)=0
⇒(Fx,Fy,Fz)⋅(dx,dy,dz)=0
即,法向量 n ⃗ = ( F x , F y , F z ) \vec{n}=(F_x,F_y,F_z) n=(Fx,Fy,Fz) 。
这也就是为什么对应一般式的平面方程 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0 ,
其法向量就是 n ⃗ = ( F x , F y , F z ) = ( A , B , C ) \vec{n}=(F_x,F_y,F_z)=(A,B,C) n=(Fx,Fy,Fz)=(A,B,C)