柱面
柱面 : r ( u , v ) = ( f ( u ) , g ( u ) , v ) \mathbf{r} ( u, v) = ( f( u) , g( u) , v) r(u,v)=(f(u),g(u),v) ;
解:由
r u = ( f ′ ( u ) , g ′ ( u ) , 0 ) , r v = ( 0 , 0 , 1 ) , \mathbf{r}_u=(f'(u),g'(u),0),\:\mathbf{r}_v=(0,0,1), ru=(f′(u),g′(u),0),rv=(0,0,1),
有
E = ⟨ r u , r u ⟩ = f ′ ( u ) 2 + g ′ ( u ) 2 , F = ⟨ r u , r v ⟩ = 0 , G = ⟨ r v , r v ⟩ = 1. E=\langle\mathbf{r}_u,\mathbf{r}_u\rangle=f'(u)^2+g'(u)^2,\:F=\langle\mathbf{r}_u,\mathbf{r}_v\rangle=0,\:G=\langle\mathbf{r}_v,\mathbf{r}_v\rangle=1. E=⟨ru,ru⟩=f′(u)2+g′(u)2,F=⟨ru,rv⟩=0,G=⟨rv,rv⟩=1.
故第一基本形式
I ( u , v ) = ( f ′ ( u ) 2 + g ′ ( u ) 2 ) d u 2 + d v 2 . \mathrm{I}(u,v)=(f'(u)^2+g'(u)^2)du^2+dv^2. I(u,v)=(f′(u)2+g′(u)2)du2+dv2.
由
r u ∧ r v = ( g ′ ( u ) , − f ′ ( u ) , 0 ) , \mathbf{r}_u\wedge\mathbf{r}_v=(g'(u),-f'(u),0), ru∧rv=(g′(u),−f′(u),0),
有
n = 1 f ′ ( u ) 2 + g ′ ( u ) 2 ( g ′ ( u ) , − f ′ ( u ) , 0 ) . \mathbf{n}=\dfrac{1}{\sqrt{f'(u)^2+g'(u)^2}}(g'(u),-f'(u),0). n=f′(u)2+g′(u)21(g′(u),−f′(u),0).
而
r u u = ( f ′ ′ ( u ) , g ′ ′ ( u ) , 0 ) , r u v = 0 , r v v = 0 , \mathbf{r}_{uu}=(f''(u),g''(u),0),\:\mathbf{r}_{uv}=\mathbf{0},\:\mathbf{r}_{vv}=\mathbf{0}, ruu=(f′′(u),g′′(u),0),ruv=0,rvv=0,
故
L = ⟨ r u u , n ⟩ = f ′ ′ ( u ) g ′ ( u ) − f ′ ( u ) g ′ ′ ( u ) f ′ ( u ) 2 + g ′ ( u ) 2 , M = ⟨ r u v , n ⟩ = 0 , N = ⟨ r v v , n ⟩ = 0. L=\langle\mathbf{r}_{uu},\mathbf{n}\rangle=\frac{f''(u)g'(u)-f'(u)g''(u)}{\sqrt{f'(u)^2+g'(u)^2}},\quad M=\langle\mathbf{r}_{uv},\mathbf{n}\rangle=0,\quad N=\langle\mathbf{r}_{vv},\mathbf{n}\rangle=0. L=⟨ruu,n⟩=f′(u)2+g′(u)2f′′(u)g′(u)−f′(u)g′′(u),M=⟨ruv,n⟩=0,N=⟨rvv,n⟩=0.
从而,第二基本形式
I I ( u , v ) = f ′ ′ ( u ) g ′ ( u ) − f ′ ( u ) g ′ ′ ( u ) f ′ ( u ) 2 + g ′ ( u ) 2 d u 2 . \mathrm{II}(u,v)=\frac{f''(u)g'(u)-f'(u)g''(u)}{\sqrt{f'(u)^2+g'(u)^2}}du^2. II(u,v)=f′(u)2+g′(u)2f′′(u)g′(u)−f′(u)g′′(u)du2.
正螺旋面
正螺旋面 :
r
(
u
,
v
)
=
(
u
cos
v
,
u
sin
v
,
b
v
)
;
\mathbf{r} ( u, v) = ( u\cos v, u\sin v, bv) ;
r(u,v)=(ucosv,usinv,bv);
解:由
r u = ( cos v , sin v , 0 ) , r v = ( − u sin v , u cos v , b ) , \mathbf{r}_u=(\cos v,\sin v,0),\:\mathbf{r}_v=(-u\sin v,u\cos v,b), ru=(cosv,sinv,0),rv=(−usinv,ucosv,b),
有
E
=
⟨
r
u
,
r
u
⟩
=
1
,
F
=
⟨
r
u
,
r
v
⟩
=
0
,
G
=
⟨
r
v
,
r
v
⟩
=
u
2
+
b
2
.
E=\langle\mathbf{r}_u,\mathbf{r}_u\rangle=1,\quad F=\langle\mathbf{r}_u,\mathbf{r}_v\rangle=0,\quad G=\langle\mathbf{r}_v,\mathbf{r}_v\rangle=u^2+b^2.
E=⟨ru,ru⟩=1,F=⟨ru,rv⟩=0,G=⟨rv,rv⟩=u2+b2.
故第一基本形式
I ( u , v ) = d u 2 + ( u 2 + b 2 ) d v 2 . \mathrm{I}(u,v)=du^2+(u^2+b^2)dv^2. I(u,v)=du2+(u2+b2)dv2.
由
r u ∧ r v = ( b sin v , − b cos v , u ) , \mathbf{r}_u\wedge\mathbf{r}_v=(b\sin v,-b\cos v,u), ru∧rv=(bsinv,−bcosv,u),
有
n
=
1
u
2
+
b
2
(
b
sin
v
,
−
b
cos
v
,
u
)
.
\mathbf{n}=\dfrac{1}{\sqrt{u^2+b^2}}(b\sin v,-b\cos v,u).
n=u2+b21(bsinv,−bcosv,u).
而
r
u
u
=
0
,
r
u
v
=
(
−
sin
v
,
cos
v
,
0
)
,
r
v
v
=
(
−
u
cos
v
,
−
u
sin
v
,
0
)
,
\mathbf{r}_{uu}=\mathbf{0},\:\mathbf{r}_{uv}=(-\sin v,\cos v,0),\:\mathbf{r}_{vv}=(-u\cos v,-u\sin v,0),
ruu=0,ruv=(−sinv,cosv,0),rvv=(−ucosv,−usinv,0),
故
L
=
⟨
r
u
u
,
n
⟩
=
0
,
M
=
⟨
r
u
v
,
n
⟩
=
−
b
u
2
+
b
2
,
N
=
⟨
r
v
v
,
n
⟩
=
0.
L=\langle\mathbf{r}_{uu},\mathbf{n}\rangle=0,\quad M=\langle\mathbf{r}_{uv},\mathbf{n}\rangle=-\frac{b}{\sqrt{u^2+b^2}},\quad N=\langle\mathbf{r}_{vv},\mathbf{n}\rangle=0.
L=⟨ruu,n⟩=0,M=⟨ruv,n⟩=−u2+b2b,N=⟨rvv,n⟩=0.
从而,第二基本形式
I
I
(
u
,
v
)
=
−
2
b
u
2
+
b
2
d
u
d
v
.
\mathrm{II}(u,v)=-2\frac{b}{\sqrt{u^2+b^2}}dudv.
II(u,v)=−2u2+b2bdudv.
椭圆抛物面
椭圆抛物面 :
r
(
u
,
v
)
=
(
a
(
u
+
v
)
,
b
(
u
−
v
)
,
u
2
+
v
2
)
.
\mathbf{r} ( u, v) = ( a( u+ v) , b( u- v) , u^2+ v^2) .
r(u,v)=(a(u+v),b(u−v),u2+v2).
解:由
r u = ( a , b , 2 u ) , r v = ( a , − b , 2 v ) , \mathbf{r}_u=(a,b,2u),\:\mathbf{r}_v=(a,-b,2v), ru=(a,b,2u),rv=(a,−b,2v),
有
E = ⟨ r u , r u ⟩ = a 2 + b 2 + 4 u 2 , F = ⟨ r u , r v ⟩ = a 2 − b 2 + 4 u v , G = ⟨ r v , r v ⟩ = a 2 + b 2 + 4 v E=\langle\mathbf{r}_u,\mathbf{r}_u\rangle=a^2+b^2+4u^2,\:F=\langle\mathbf{r}_u,\mathbf{r}_v\rangle=a^2-b^2+4uv,\:G=\langle\mathbf{r}_v,\mathbf{r}_v\rangle=a^2+b^2+4v E=⟨ru,ru⟩=a2+b2+4u2,F=⟨ru,rv⟩=a2−b2+4uv,G=⟨rv,rv⟩=a2+b2+4v
故第一基本形式
I ( u , v ) = ( a 2 + b 2 + 4 u 2 ) d u 2 + 2 ( a 2 − b 2 + 4 u v ) d u d v + ( a 2 + b 2 + 4 v 2 ) d v 2 . \mathrm{I}(u,v)=(a^2+b^2+4u^2)du^2+2(a^2-b^2+4uv)dudv+(a^2+b^2+4v^2)dv^2. I(u,v)=(a2+b2+4u2)du2+2(a2−b2+4uv)dudv+(a2+b2+4v2)dv2.
由
r u ∧ r v = ( 2 b ( u + v ) , 2 a ( u − v ) , − 2 a b ) , \mathbf{r}_u\wedge\mathbf{r}_v=(2b(u+v),2a(u-v),-2ab), ru∧rv=(2b(u+v),2a(u−v),−2ab),
有
n = 1 a 2 ( u − v ) 2 + b 2 ( u + v ) 2 + a 2 b 2 ( b ( u + v ) , a ( u − v ) , − a b ) . \mathbf{n}=\frac{1}{\sqrt{a^2(u-v)^2+b^2(u+v)^2+a^2b^2}}(b(u+v),a(u-v),-ab). n=a2(u−v)2+b2(u+v)2+a2b21(b(u+v),a(u−v),−ab).
而
r u u = ( 0 , 0 , 2 ) , r u v = 0 , r v v = ( 0 , 0 , 2 ) , \mathbf{r}_{uu}=(0,0,2),\quad\mathbf{r}_{uv}=\mathbf{0},\quad\mathbf{r}_{vv}=(0,0,2), ruu=(0,0,2),ruv=0,rvv=(0,0,2),
故
L = N = − 2 a b a 2 ( u − v ) 2 + b 2 ( u + v ) 2 + a 2 b 2 , M = 0. L=N=-\frac{2ab}{\sqrt{a^2(u-v)^2+b^2(u+v)^2+a^2b^2}},\quad M=0. L=N=−a2(u−v)2+b2(u+v)2+a2b22ab,M=0.
从而,第二基本形式
II ( u , v ) = − 2 a b a 2 ( u − v ) 2 + b 2 ( u + v ) 2 + a 2 b 2 ( d u 2 + d v 2 ) . \text{II}(u,v)=-\frac{2ab}{\sqrt{a^2(u-v)^2+b^2(u+v)^2+a^2b^2}}(du^2+dv^2). II(u,v)=−a2(u−v)2+b2(u+v)2+a2b22ab(du2+dv2).