柱面&正螺旋面&椭圆螺旋面的第一、二基本形式

柱面

柱面 : r ( u , v ) = ( f ( u ) , g ( u ) , v ) \mathbf{r} ( u, v) = ( f( u) , g( u) , v) r(u,v)=(f(u),g(u),v) ;

解:由

r u = ( f ′ ( u ) , g ′ ( u ) , 0 ) ,   r v = ( 0 , 0 , 1 ) , \mathbf{r}_u=(f'(u),g'(u),0),\:\mathbf{r}_v=(0,0,1), ru=(f(u),g(u),0),rv=(0,0,1),

E = ⟨ r u , r u ⟩ = f ′ ( u ) 2 + g ′ ( u ) 2 ,   F = ⟨ r u , r v ⟩ = 0 ,   G = ⟨ r v , r v ⟩ = 1. E=\langle\mathbf{r}_u,\mathbf{r}_u\rangle=f'(u)^2+g'(u)^2,\:F=\langle\mathbf{r}_u,\mathbf{r}_v\rangle=0,\:G=\langle\mathbf{r}_v,\mathbf{r}_v\rangle=1. E=ru,ru=f(u)2+g(u)2,F=ru,rv=0,G=rv,rv=1.

故第一基本形式

I ( u , v ) = ( f ′ ( u ) 2 + g ′ ( u ) 2 ) d u 2 + d v 2 . \mathrm{I}(u,v)=(f'(u)^2+g'(u)^2)du^2+dv^2. I(u,v)=(f(u)2+g(u)2)du2+dv2.

r u ∧ r v = ( g ′ ( u ) , − f ′ ( u ) , 0 ) , \mathbf{r}_u\wedge\mathbf{r}_v=(g'(u),-f'(u),0), rurv=(g(u),f(u),0),

n = 1 f ′ ( u ) 2 + g ′ ( u ) 2 ( g ′ ( u ) , − f ′ ( u ) , 0 ) . \mathbf{n}=\dfrac{1}{\sqrt{f'(u)^2+g'(u)^2}}(g'(u),-f'(u),0). n=f(u)2+g(u)2 1(g(u),f(u),0).

r u u = ( f ′ ′ ( u ) , g ′ ′ ( u ) , 0 ) ,   r u v = 0 ,   r v v = 0 , \mathbf{r}_{uu}=(f''(u),g''(u),0),\:\mathbf{r}_{uv}=\mathbf{0},\:\mathbf{r}_{vv}=\mathbf{0}, ruu=(f′′(u),g′′(u),0),ruv=0,rvv=0,

L = ⟨ r u u , n ⟩ = f ′ ′ ( u ) g ′ ( u ) − f ′ ( u ) g ′ ′ ( u ) f ′ ( u ) 2 + g ′ ( u ) 2 , M = ⟨ r u v , n ⟩ = 0 , N = ⟨ r v v , n ⟩ = 0. L=\langle\mathbf{r}_{uu},\mathbf{n}\rangle=\frac{f''(u)g'(u)-f'(u)g''(u)}{\sqrt{f'(u)^2+g'(u)^2}},\quad M=\langle\mathbf{r}_{uv},\mathbf{n}\rangle=0,\quad N=\langle\mathbf{r}_{vv},\mathbf{n}\rangle=0. L=ruu,n=f(u)2+g(u)2 f′′(u)g(u)f(u)g′′(u),M=ruv,n=0,N=rvv,n=0.

从而,第二基本形式

I I ( u , v ) = f ′ ′ ( u ) g ′ ( u ) − f ′ ( u ) g ′ ′ ( u ) f ′ ( u ) 2 + g ′ ( u ) 2 d u 2 . \mathrm{II}(u,v)=\frac{f''(u)g'(u)-f'(u)g''(u)}{\sqrt{f'(u)^2+g'(u)^2}}du^2. II(u,v)=f(u)2+g(u)2 f′′(u)g(u)f(u)g′′(u)du2.



正螺旋面

正螺旋面 : r ( u , v ) = ( u cos ⁡ v , u sin ⁡ v , b v ) ; \mathbf{r} ( u, v) = ( u\cos v, u\sin v, bv) ; r(u,v)=(ucosv,usinv,bv);
解:由

r u = ( cos ⁡ v , sin ⁡ v , 0 ) ,   r v = ( − u sin ⁡ v , u cos ⁡ v , b ) , \mathbf{r}_u=(\cos v,\sin v,0),\:\mathbf{r}_v=(-u\sin v,u\cos v,b), ru=(cosv,sinv,0),rv=(usinv,ucosv,b),


E = ⟨ r u , r u ⟩ = 1 , F = ⟨ r u , r v ⟩ = 0 , G = ⟨ r v , r v ⟩ = u 2 + b 2 . E=\langle\mathbf{r}_u,\mathbf{r}_u\rangle=1,\quad F=\langle\mathbf{r}_u,\mathbf{r}_v\rangle=0,\quad G=\langle\mathbf{r}_v,\mathbf{r}_v\rangle=u^2+b^2. E=ru,ru=1,F=ru,rv=0,G=rv,rv=u2+b2.

故第一基本形式

I ( u , v ) = d u 2 + ( u 2 + b 2 ) d v 2 . \mathrm{I}(u,v)=du^2+(u^2+b^2)dv^2. I(u,v)=du2+(u2+b2)dv2.

r u ∧ r v = ( b sin ⁡ v , − b cos ⁡ v , u ) , \mathbf{r}_u\wedge\mathbf{r}_v=(b\sin v,-b\cos v,u), rurv=(bsinv,bcosv,u),

n = 1 u 2 + b 2 ( b sin ⁡ v , − b cos ⁡ v , u ) . \mathbf{n}=\dfrac{1}{\sqrt{u^2+b^2}}(b\sin v,-b\cos v,u). n=u2+b2 1(bsinv,bcosv,u).

r u u = 0 ,   r u v = ( − sin ⁡ v , cos ⁡ v , 0 ) ,   r v v = ( − u cos ⁡ v , − u sin ⁡ v , 0 ) , \mathbf{r}_{uu}=\mathbf{0},\:\mathbf{r}_{uv}=(-\sin v,\cos v,0),\:\mathbf{r}_{vv}=(-u\cos v,-u\sin v,0), ruu=0,ruv=(sinv,cosv,0),rvv=(ucosv,usinv,0),

L = ⟨ r u u , n ⟩ = 0 , M = ⟨ r u v , n ⟩ = − b u 2 + b 2 , N = ⟨ r v v , n ⟩ = 0. L=\langle\mathbf{r}_{uu},\mathbf{n}\rangle=0,\quad M=\langle\mathbf{r}_{uv},\mathbf{n}\rangle=-\frac{b}{\sqrt{u^2+b^2}},\quad N=\langle\mathbf{r}_{vv},\mathbf{n}\rangle=0. L=ruu,n=0,M=ruv,n=u2+b2 b,N=rvv,n=0.
从而,第二基本形式
I I ( u , v ) = − 2 b u 2 + b 2 d u d v . \mathrm{II}(u,v)=-2\frac{b}{\sqrt{u^2+b^2}}dudv. II(u,v)=2u2+b2 bdudv.



椭圆抛物面

椭圆抛物面 : r ( u , v ) = ( a ( u + v ) , b ( u − v ) , u 2 + v 2 ) . \mathbf{r} ( u, v) = ( a( u+ v) , b( u- v) , u^2+ v^2) . r(u,v)=(a(u+v),b(uv),u2+v2).
解:由

r u = ( a , b , 2 u ) ,   r v = ( a , − b , 2 v ) , \mathbf{r}_u=(a,b,2u),\:\mathbf{r}_v=(a,-b,2v), ru=(a,b,2u),rv=(a,b,2v),

E = ⟨ r u , r u ⟩ = a 2 + b 2 + 4 u 2 ,   F = ⟨ r u , r v ⟩ = a 2 − b 2 + 4 u v ,   G = ⟨ r v , r v ⟩ = a 2 + b 2 + 4 v E=\langle\mathbf{r}_u,\mathbf{r}_u\rangle=a^2+b^2+4u^2,\:F=\langle\mathbf{r}_u,\mathbf{r}_v\rangle=a^2-b^2+4uv,\:G=\langle\mathbf{r}_v,\mathbf{r}_v\rangle=a^2+b^2+4v E=ru,ru=a2+b2+4u2,F=ru,rv=a2b2+4uv,G=rv,rv=a2+b2+4v

故第一基本形式

I ( u , v ) = ( a 2 + b 2 + 4 u 2 ) d u 2 + 2 ( a 2 − b 2 + 4 u v ) d u d v + ( a 2 + b 2 + 4 v 2 ) d v 2 . \mathrm{I}(u,v)=(a^2+b^2+4u^2)du^2+2(a^2-b^2+4uv)dudv+(a^2+b^2+4v^2)dv^2. I(u,v)=(a2+b2+4u2)du2+2(a2b2+4uv)dudv+(a2+b2+4v2)dv2.

r u ∧ r v = ( 2 b ( u + v ) , 2 a ( u − v ) , − 2 a b ) , \mathbf{r}_u\wedge\mathbf{r}_v=(2b(u+v),2a(u-v),-2ab), rurv=(2b(u+v),2a(uv),2ab),

n = 1 a 2 ( u − v ) 2 + b 2 ( u + v ) 2 + a 2 b 2 ( b ( u + v ) , a ( u − v ) , − a b ) . \mathbf{n}=\frac{1}{\sqrt{a^2(u-v)^2+b^2(u+v)^2+a^2b^2}}(b(u+v),a(u-v),-ab). n=a2(uv)2+b2(u+v)2+a2b2 1(b(u+v),a(uv),ab).

r u u = ( 0 , 0 , 2 ) , r u v = 0 , r v v = ( 0 , 0 , 2 ) , \mathbf{r}_{uu}=(0,0,2),\quad\mathbf{r}_{uv}=\mathbf{0},\quad\mathbf{r}_{vv}=(0,0,2), ruu=(0,0,2),ruv=0,rvv=(0,0,2),

L = N = − 2 a b a 2 ( u − v ) 2 + b 2 ( u + v ) 2 + a 2 b 2 , M = 0. L=N=-\frac{2ab}{\sqrt{a^2(u-v)^2+b^2(u+v)^2+a^2b^2}},\quad M=0. L=N=a2(uv)2+b2(u+v)2+a2b2 2ab,M=0.

从而,第二基本形式

II ( u , v ) = − 2 a b a 2 ( u − v ) 2 + b 2 ( u + v ) 2 + a 2 b 2 ( d u 2 + d v 2 ) . \text{II}(u,v)=-\frac{2ab}{\sqrt{a^2(u-v)^2+b^2(u+v)^2+a^2b^2}}(du^2+dv^2). II(u,v)=a2(uv)2+b2(u+v)2+a2b2 2ab(du2+dv2).



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值