直击微服务作用
微服务架构:
遇到了什么问题?
将单体架构拆分成微服务架构后,如果保证多个服务(项目)正常运行?
哪个技术可以解决这个问题?
微服务技术
服务治理: 服务管理,维护服务与服务之间的关系
这个技术如何使用?
netflix/网飞:
SpringCloud: ★
Alibaba: ★
软件架构
架构: 结构
软件架构: 软件的结构
淘宝架构演进过程:
100并发 -> 千万并发,阿里淘宝的 14 次架构演进之路!
软件架构演进过程:
单体架构: All in one
优点: 架构简单 部署方便
缺点:
耦合度高,维护成本大
技术栈受限
使用场景: 用户量小,一般情况下开发学生管理系统
分布式架构:
将大项目拆分成多个小项目
微服务架构:
拆分原则:
单一职责: 一个服务只做一件事情(不允许出现冗余的功能或模块)
自治: 团队独立,技术独立,部署独立,数据库独立
面向服务: 微服务开发完毕后,需要对外提供统一的访问接口(对接规范)
隔离性强: 服务调用做好隔离、容错、降级,避免出现级联问题
微服务技术:
各个公司将自己的单体架构的项目拆分成微服务架构项目后,都有自己的解决方案.我们学习时,主要学习SpringCloud官方提供的微服务组件,SpringCloud官方使用的组件主要来自NetFlix和Alibaba
学习微服务其实就是学习相关的微服务组件,一个组件可以解决微服务拆分后的一类问题.
如何使用:
准备微服务环境
创建两个数据库,分别写一套对应的增删改查操作
依赖
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Hoxton.SR10</version>
<type>pom</type>
<scope>import</scope>
</dependency>
Eureka组件
遇到了什么问题?
- order-service在发起远程调用的时候,该如何得知user-service实例的ip地址和端口?
- 有多个user-service实例地址,order-service调用时该如何选择?
- order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?
哪个技术可以解决这个问题?
Eureka组件可以解决
这个技术如何使用?
1.搭建Eureka服务端
2.在微服务中整合Eureka客户端
3.在消费者方,通过服务名称获取提供者的地址,负载均衡进行访问
RestTemplate对象
RestTemplate: 模拟浏览器的行为向服务器发送请求
/**
* @Author: huahua
* @name:RestTemplateTest
* @Date:2023/7/18 10:41
*/
@SpringBootTest
public class RestTemplateTest {
/**
* RPC(Remote Procedure Call Protocol): 远程过程调用
* 只要实现了两台机器之间的数据交互就可以称之为远程过程调用
* RestTemplate: 封装了远程调用的客户端
*
*/
@Autowired
private RestTemplate restTemplate;
// get方式的请求
@Test
public void test01(){
// 向目标服务器发送请求,并接收对应的结果
//String resp = restTemplate.getForObject("http://user-service/user/1", String.class);
//TbUser resp = restTemplate.getForObject("http://user-service/user/1", TbUser.class);
// 携带参数
//TbUser resp = restTemplate.getForObject("http://user-service/user/findByName/柳岩", TbUser.class);
//System.out.println(resp);
ResponseEntity<TbUser> resp = restTemplate.getForEntity("http://127.0.0.1:8081/user/1", TbUser.class);
// 获取响应状态
HttpStatus statusCode = resp.getStatusCode();
// 获取响应数据
TbUser tbUser = resp.getBody();
// 获取响应头
HttpHeaders headers = resp.getHeaders();
// 获取响应头中的cookie头
List<String> list = headers.get("Set-Cookie");
System.out.println(statusCode);
System.out.println(tbUser);
System.out.println(headers);
System.out.println(list);
}
/**
* 请求头设置参数,访问指定接口
*/
@Test
public void test03(){
String url="http://127.0.0.1:8081/user/2";
//设置请求头参数
HttpHeaders headers = new HttpHeaders();
headers.add("token","damimi");
//请求头填充到请求对象下
HttpEntity<Map> entry = new HttpEntity<>(headers);
//发送请求
ResponseEntity<TbUser> responseEntity = restTemplate.exchange(url, HttpMethod.GET, entry, TbUser.class);
TbUser result = responseEntity.getBody();
System.out.println(result);
}
/**
* post模拟form表单提交数据
*/
@Test
public void test04(){
String url="http://localhost:8081/user/save";
//设置请求头,指定请求数据方式
HttpHeaders headers = new HttpHeaders();
//告知被调用方,请求方式是form表单提交,这样对方解析数据时,就会按照form表单的方式解析处理
headers.add("Content-type","application/x-www-form-urlencoded");
//组装模拟form表单提交数据,内部元素相当于form表单的input框
LinkedMultiValueMap<String, Object> map = new LinkedMultiValueMap<>();
map.add("username","迪丽热巴");
map.add("address","天津");
HttpEntity<LinkedMultiValueMap<String, Object>> httpEntity = new HttpEntity<>(map, headers);
/*
参数1:请求url地址
参数2:请求方式 POST
参数3:请求体对象,携带了请求头和请求体相关的参数
参数4:响应数据类型
*/
ResponseEntity<TbUser> exchange = restTemplate.exchange(url, HttpMethod.POST, httpEntity, TbUser.class);
TbUser body = exchange.getBody();
System.out.println(body);
}
/**
* post发送json数据
*/
@Test
public void test05() throws JsonProcessingException {
String url="http://localhost:8081/user/save2";
//设置请求头的请求参数类型
HttpHeaders headers = new HttpHeaders();
//告知被调用方,发送的数据格式的json格式,对方要以json的方式解析处理
headers.add("Content-type","application/json; charset=utf-8");
//组装json格式数据
HashMap<String, String> reqMap = new HashMap<>();
reqMap.put("username","zhangsan");
reqMap.put("address","上海");
ObjectMapper objectMapper = new ObjectMapper();
String reqMapJson = objectMapper.writeValueAsString(reqMap);
//构建请求对象
HttpEntity<String> httpEntity = new HttpEntity<>(reqMapJson, headers);
/*
发送数据
参数1:请求url地址
参数2:请求方式
参数3:请求体对象,携带了请求头和请求体相关的参数
参数4:响应数据类型
*/
ResponseEntity<TbUser> responseEntity = restTemplate.exchange(url, HttpMethod.POST, httpEntity, TbUser.class);
//或者
// Account account=restTemplate.postForObject(url,httpEntity,Account.class);
TbUser body = responseEntity.getBody();
System.out.println(body);
}
@Test
public void test07(){
ResponseEntity<String> resp = restTemplate.getForEntity("http://www.takungpao.com/news/index.html", String.class);
String body = resp.getBody();
System.out.println(body);
}
}
Ribbon
当服务从Eureka中拉取多个服务地址时,Ribbon可以实现负载均衡(从多个地址中选择一个)
在RestTemplate对象上添加注解 @LoadBalanced
Hystrix组件
作用: 解决雪崩问题
雪崩问题: 在一个业务链路中,由于下游服务的故障,导致整个链路关联的所以服务宕机.
解决方案:
服务降级: 换一种方式快速给上游服务一个响应.
服务熔断: 当出错率到达一定的阈值时,直接熔断,不再访问下游服务,直接降级.
服务降级
1.导入启动器
在消费者/上游服务方导入
<!-- Hystrix启动器 -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>
2.在引导上开启Hystrix支持
@EnableHystrix
3.编写降级逻辑
a.在需要降级的方法上降级注解: @HystrixCommand(fallbackMethod="降级方法名")
b.编写降级的方法
降级处理的方法,与原方法返回值,参数列表保持一致
package com.bw.order.controller;
import com.bw.order.domain.TbOrder;
import com.bw.order.domain.TbUser;
import com.bw.order.service.TbOrderService;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
/**
* @Author: huahaua
* @name:OrderController
* @Date:2023/8/14 18:48
*/
@RestController
@RequestMapping("/order")
public class OrderController {
@Autowired
private TbOrderService orderService;
// 此方法执行超时后,调用对应降级的方法快速处理业务
@RequestMapping("/findById/{id}")
@HystrixCommand(fallbackMethod="findUserByIdForFail")
public TbOrder findById(@PathVariable Integer id){
TbOrder order = orderService.findById(id);
return order;
}
// todo:降级处理的方法,与原方法返回值,参数列表保持一致
public TbOrder findUserByIdForFail(Integer id){
TbOrder order = new TbOrder();
order.setName("你的小可爱走丢了....服务降级");
return order;
}
}
4.注意事项和配置
Hystrix默认降级时间为1秒钟
配置降级时间:
hystrix:
command:
default:
execution.isolation.thread.timeoutInMilliseconds: 2000 # 单位毫秒