题目描述:
我们定义了山峰序列的规则:对于一个序列a,存在一个j满足以下条件:
链接:https://ac.nowcoder.com/acm/contest/64819/A
来源:牛客网
例如 :[1,2,3,2,1],[5,4,3,2,1],[1,1,3]是山峰序列。
而[1,3,1,5,5,4],[1,3,1,2],就不是山峰序列。
[1,1,3] 是山峰序列。
对于所有的i (1 ≤ i ≤ j-1),ai ≤ ai+1;
对于所有的i (j ≤ i ≤ n-1),ai ≥ ai+1。 现在Antiamuny给出了一个长度为n的序列,他想知道有多少种方法可以重排这个序列,使得重排后的序列成为山峰序列。
两种重排的方法不同当且仅当得到的序列不同,比如对于序列[1,1,2],只有[1,1,2],[1,2,1],[2,1,1]这三种不同的重排方法。
输入描述:
第一行包含一个整数T(1<=T<=2*10^5,表示询问组数。
接下来T行,每行描述一个询问。每个询问的第一行包含一个整数n(1<=n<=10^5),表示给定的序列长度。第二行包含n个正整数ai(1<=ai<=10^9),表示给出的序列。
输出描述:
输出T行,每行一个整数,表示对应询问的答案。
由于答案可能过大,所以需要将答案对998244353取余。
示例:
输入:
3
5
1 2 3 4 5
3
3 3 3
3
1 2 1
输出:
16
1
3
思路解析:
2,1,1 2,1,1,1 2,1,1,1,1
1,2,1 1,2,1,1 1,2,1,1,1
1,1,2 1,1,2,1 1,1,2,1,1
1,1,1,2 1,1,1,2,1
1,1,1,1,2
相同的数字每增加一个则排列结果多一个;
而每有一个不同的数字产生排列结果乘2倍(可在左可在右,其他照常排列);
完整代码:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=100010;
long long int mod=998244353;
int a[N];
int main()
{
int T;
cin>>T;
while(T--){
int n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
long long int ans=1;
sort(a+1,a+1+n);
for(int i=1;i<=n;i++){
int s=i;
while(s<n&&a[s]==a[s+1])s++;
if(s<n)ans=(long long)ans*(s-i+2)%mod;
i=s;
}
cout<<ans<<"\n";
}
return 0;
}