PTA---7-3 堆宝塔(数据结构)

ta.jpg

堆宝塔游戏是让小朋友根据抓到的彩虹圈的直径大小,按照从大到小的顺序堆起宝塔。但彩虹圈不一定是按照直径的大小顺序抓到的。聪明宝宝采取的策略如下:

  • 首先准备两根柱子,一根 A 柱串宝塔,一根 B 柱用于临时叠放。
  • 把第 1 块彩虹圈作为第 1 座宝塔的基座,在 A 柱放好。
  • 将抓到的下一块彩虹圈 C 跟当前 A 柱宝塔最上面的彩虹圈比一下,如果比最上面的小,就直接放上去;否则把 C 跟 B 柱最上面的彩虹圈比一下:
    • 如果 B 柱是空的、或者 C 大,就在 B 柱上放好;
    • 否则把 A 柱上串好的宝塔取下来作为一件成品;然后把 B 柱上所有比 C 大的彩虹圈逐一取下放到 A 柱上,最后把 C 也放到 A 柱上。

重复此步骤,直到所有的彩虹圈都被抓完。最后 A 柱上剩下的宝塔作为一件成品,B 柱上剩下的彩虹圈被逐一取下,堆成另一座宝塔。问:宝宝一共堆出了几个宝塔?最高的宝塔有多少层?

输入格式:

输入第一行给出一个正整数 N(≤103),为彩虹圈的个数。第二行按照宝宝抓取的顺序给出 N 个不超过 100 的正整数,对应每个彩虹圈的直径。

输出格式:

在一行中输出宝宝堆出的宝塔个数,和最高的宝塔的层数。数字间以 1 个空格分隔,行首尾不得有多余空格。

输入样例:

11
10 8 9 5 12 11 4 3 1 9 15

输出样例:

4 5

样例解释:

宝宝堆成的宝塔顺次为:

  • 10、8、5
  • 12、11、4、3、1
  • 9
  • 15、9

1.   先上一波解释说明:

2.接下来的就是大家都喜欢的完整代码:

#include<iostream>

using namespace std;

typedef int Elemtype;

const int MaxSize=10010;

typedef struct PNode{
    Elemtype data[MaxSize];
    Elemtype data2[MaxSize];
    Elemtype top1;
    Elemtype top2;
}*Link;    //常规定义,;两个栈,一个负责存储正排列,一个负责暂时堆放,预备队;

//栈的压入,正排列
void push(Link &L,Elemtype x){
    L->top1++;
    L->data[L->top1]=x;
}

//栈的压入,预备队;
void push2(Link &L,Elemtype x){
    L->top2++;
    L->data2[L->top2]=x;
}

//主函数
int main()
{
    Link L;
    L=(Link)malloc(sizeof(struct PNode));   //申请空间
    L->top1=-1;
    L->top2=-1;
    //初始化
    
    Elemtype n;
    int cnt=0,k=0;    //cnt用来记录一共堆了多少宝塔,金字塔,k用来记录最高的是多少层;
    int j=0;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        int m;
        scanf("%d",&m);
        //多种情况下的各种操作,不难理解,只不过情况比较多,容易考虑不周以及混淆;
        if(L->top1==-1||L->data[L->top1]>m){
            push(L,m);
            j++;
        }else{
            if(L->top2==-1||L->data2[L->top2]<m){
                push2(L,m);
            }else{
                cnt++;
                k=max(j,k);   //优胜略汰
                j=0;          //再度初始化,即满足条件宝塔,金字塔清空,开始进行下一个宝塔,金字塔的堆积;
                L->top1=-1;
                
                //将预备队中满足大于当前数条件的转移到正排列中扶正;
                while(L->top2!=-1&&L->data2[L->top2]>m){
                    int t=L->data2[L->top2];
                    push(L,t);
                    L->top2--;
                    j++;
                }
                push(L,m);    //不要忘记将当前的数也压入栈中;
                j++;
            }
        }
        
    }
    k=max(j,k);        //一定不要忘记,否则会卡特殊情况的点,比如数据数量:2  数据:  1 2最终输出为2 0,正确输出为2 1
    //原因是该样例没有经过else步骤故没有经过优胜略汰的这一步即K的值未更新;
    if(L->top1!=-1){
        cnt++;
    }
    if(L->top2!=-1){
        cnt++;
    }
    
    printf("%d %d\n",cnt,k);
    return 0;
}

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值