鞍点的判断(黑森矩阵/黑塞矩阵)

判断鞍点的一个充分条件是:函数在一阶导数为零处(驻点)的黑塞矩阵为不定矩阵。

 

半正定矩阵: 所有特征值为非负。

半负定矩阵:所有特征值为非正。

不定矩阵:特征值有正有负。

 

 容易解出特征值一个为2,一个为-2(有正有负),显然是不定矩阵,

注意:函数在一阶导数为零处(驻点)的黑塞矩阵为不定矩阵只是判断该点是否为鞍点的充分条件,也就是说函数在一阶导数为零处(驻点)的黑塞矩阵不满足不定矩阵的定义,也不一定能够说明它不是鞍点。

比如在 z=x^4−y^4 点 (0,0)处的 Hessian 矩阵是一个 0 矩阵,并不满足是不定矩阵,但是它是一个鞍点

所以该点是鞍点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值