BERT
NLP里的迁移学习
- 使用预训练好的模型来抽取词、句子的特征
- 例如 word2vec 或语言模型
- 不更新预训练好的模型
- 需要构建新的网络来抓取新任务需要的信息
- Word2vec 忽略了时序信息,语言模型只看了一个方向
BERT 动机
BERT 架构
- 只有编码器的 Transformer
- 两个版本:
- Base: #blocks = 12, hidden size = 768, #heads = 12, #parameters = 110M
- Large: #blocks = 24, hidden size = 1024, #heads = 16, #parameter = 340M
- 在大规模数据上训练 > 3B 词
对输入的修改
- 每个样本是一个句子对
- 加入额外的片段嵌入
- 位置编码可学习
预训练任务1:带掩码的语言模型
- Transfomer的编码器是双向,标准语言模型要求单向
- 带掩码的语言模型每次随机(15%概率)将一些词元换成 < mask >
- 因为微调任务中不出现< mask >
- 80%概率下,将选中的词元变成< mask >
- 10%概率下换成一个随机词元
- 10%概率下保持原有的词元
预训练任务2:下一句子预测
- 预测一个句子对中两个句子是不是相邻
- 训练样本中:
- 50%概率选择相邻句子对:< cls > this movie is great < sep > i like it < sep >
- 50%概率选择随机句子对:< cls > this movie is great < sep > hello world < sep >
- 将< cls >对应的输出放到一个全连接层来预测
总结
- BERT针对微调设计
- 基于Transformer的编码器做了如下修改
- 模型更大,训练数据更多
- 输入句子对,片段嵌入,可学习的位置编码
- 训练时使用两个任务:
- 带掩码的语言模型
- 下一个句子预测
BERT 代码
Bidirectional Encoder Representations from Transformers (BERT)
首先导入必要的环境
import torch
from torch import nn
from d2l import torch as d2l
输入表示
在自然语言处理中,有些任务(如情感分析)以单个文本作为输入,而有些任务(如自然语言推断)以一对文本序列作为输入。BERT输入序列明确地表示单个文本和文本对。当输入为单个文本时,BERT输入序列是特殊类别词元“<cls>”、文本序列的标记、以及特殊分隔词元“<sep>”的连结。当输入为文本对时,BERT输入序列是“<cls>”、第一个文本序列的标记、“<sep>”、第二个文本序列标记、以及“<sep>”的连结。下面将始终如一地将术语“BERT输入序列”与其他类型的“序列”区分开来。例如,一个BERT输入序列可以包括一个文本序列或两个文本序列。
为了区分文本对,根据输入序列学到的片段嵌入 e A \mathbf{e}_A eA和 e B \mathbf{e}_B eB分别被添加到第一序列和第二序列的词元嵌入中。对于单文本输入,仅使用 e A \mathbf{e}_A eA。下面将一个句子或两个句子作为输入,然后返回BERT输入序列的标记及其相应的片段索引。
def get_tokens_and_segments(tokens_a, tokens_b=None):
"""获取输入序列的词元及其片段索引"""
tokens = ['<cls>'] + tokens_a + ['<sep>']
# 0和1分别标记片段A和B
segments = [0] * (len(tokens_a) + 2)
if tokens_b is not None:
tokens += tokens_b + ['<sep>']
segments += [1] * (len(tokens_b) + 1)
return tokens, segments
BERT 编码器类
class BERTEncoder(nn.Module):
"""BERT编码器"""
def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
ffn_num_hiddens, num_heads, num_layers, dropout,
max_len=1000, key_size=768, query_size=768, value_size=768,
**kwargs):
"""
初始化BERT编码器
参数:
vocab_size: 词表大小
num_hiddens: 隐藏单元数(嵌入维度)
norm_shape: 层归一化的形状
ffn_num_input: 前馈网络的输入大小
ffn_num_hiddens: 前馈网络的隐藏层大小
num_heads: 多头注意力的头数
num_layers: 编码器块的层数
dropout: Dropout概率
max_len: 最大序列长度
key_size: 注意力机制中键的维度
query_size: 注意力机制中查询的维度
value_size: 注意力机制中值的维度
"""
super(BERTEncoder, self).__init__(**kwargs)
# 词元嵌入层,将词元索引映射到嵌入向量
self.token_embedding = nn.Embedding(vocab_size, num_hiddens)
# 片段嵌入层,用于区分句子A和句子B
self.segment_embedding = nn.Embedding(2, num_hiddens)
# 编码器块的堆叠,使用d2l提供的EncoderBlock实现
self.blks = nn.Sequential()
for i in range(num_layers):
self.blks.add_module(f"{i}", d2l.EncoderBlock(
key_size, query_size, value_size, num_hiddens, norm_shape,
ffn_num_input, ffn_num_hiddens, num_heads, dropout, True))
# 可学习的位置嵌入参数,用于表示序列中每个位置的信息
# 形状为 (1, max_len, num_hiddens),其中1表示批量维度
self.pos_embedding = nn.Parameter(torch.randn(1, max_len, num_hiddens))
def forward(self, tokens, segments, valid_lens):
"""
前向传播
参数:
tokens: 输入的词元索引,形状为 (批量大小, 最大序列长度)
segments: 输入的片段索引,形状为 (批量大小, 最大序列长度)
valid_lens: 有效长度,用于掩蔽填充部分,形状为 (批量大小,)
返回:
编码后的表示,形状为 (批量大小, 最大序列长度, num_hiddens)
"""
# 词元嵌入和片段嵌入相加,形状为 (批量大小, 最大序列长度, num_hiddens)
X = self.token_embedding(tokens) + self.segment_embedding(segments)
# 加上位置嵌入,位置嵌入的形状为 (1, 最大序列长度, num_hiddens)
# 通过切片选择与输入序列长度匹配的部分
X = X + self.pos_embedding.data[:, :X.shape[1], :]
# 依次通过每个编码器块
for blk in self.blks:
X = blk(X, valid_lens)
# 返回编码后的表示
return X
假设词表大小为10000,喜爱卖弄演示BERTEncoder
的前向推断,创建一个实例并初始化其参数。
vocab_size, num_hiddens, ffn_num_hiddens, num_heads = \
10000, 768, 1024, 4
norm_shape, ffn_num_input, num_layers, dropout = [768], 768, 2, 0.2
encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape, ffn_num_input,
ffn_num_hiddens, num_heads, num_layers, dropout)
tokens = torch.randint(0, vocab_size, (2, 8))
segments = torch.tensor([[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1]])
encoded_X = encoder(tokens, segments, None)
encoded_X.shape
# torch.Size([2, 8, 768])
遮蔽语言模型
class MaskLM(nn.Module):
"""BERT的掩蔽语言模型任务"""
def __init__(self, vocab_size, num_hiddens, num_inputs=768, **kwargs):
"""
初始化掩蔽语言模型(Masked Language Model)
参数:
vocab_size: 词表大小,用于预测的输出维度
num_hiddens: 隐藏单元数,用于MLP的隐藏层
num_inputs: 输入特征的维度,默认为768
"""
super(MaskLM, self).__init__(**kwargs)
# 定义一个多层感知机(MLP)用于预测掩蔽词元
self.mlp = nn.Sequential(
nn.Linear(num_inputs, num_hiddens), # 全连接层,将输入映射到隐藏层
nn.ReLU(), # 激活函数,使用ReLU
nn.LayerNorm(num_hiddens), # 层归一化,稳定训练
nn.Linear(num_hiddens, vocab_size) # 输出层,映射到词表大小的维度
)
def forward(self, X, pred_positions):
"""
前向传播
参数:
X: 编码后的BERT表示,形状为 (batch_size, seq_len, num_inputs)
pred_positions: 掩蔽词元的位置,形状为 (batch_size, num_pred_positions)
返回:
mlm_Y_hat: 掩蔽位置的预测结果,形状为 (batch_size, num_pred_positions, vocab_size)
"""
# 获取每个序列中掩蔽词元的数量
num_pred_positions = pred_positions.shape[1]
# 将掩蔽位置展平为一维向量,形状为 (batch_size * num_pred_positions,)
pred_positions = pred_positions.reshape(-1)
# 获取批量大小
batch_size = X.shape[0]
# 创建一个重复的批量索引,用于从X中提取掩蔽位置的特征
# 假设 batch_size=2,num_pred_positions=3
# 那么 batch_idx 是 [0, 0, 0, 1, 1, 1]
batch_idx = torch.arange(0, batch_size)
batch_idx = torch.repeat_interleave(batch_idx, num_pred_positions)
# 根据批量索引和掩蔽位置索引,从X中提取掩蔽位置的特征
# masked_X 的形状为 (batch_size * num_pred_positions, num_inputs)
masked_X = X[batch_idx, pred_positions]
# 将提取的特征重新调整为 (batch_size, num_pred_positions, num_inputs)
masked_X = masked_X.reshape((batch_size, num_pred_positions, -1))
# 使用MLP对掩蔽位置的特征进行预测
# mlm_Y_hat 的形状为 (batch_size, num_pred_positions, vocab_size)
mlm_Y_hat = self.mlp(masked_X)
return mlm_Y_hat
The forward inference of MaskLM
Next Sentence Prediction
#@save
class NextSentencePred(nn.Module):
"""BERT的下一句预测任务"""
def __init__(self, num_inputs, **kwargs):
super(NextSentencePred, self).__init__(**kwargs)
self.output = nn.Linear(num_inputs, 2)
def forward(self, X):
# X的形状:(batchsize,num_hiddens)
return self.output(X)
The forward inference of an NextSentencePred
整合代码
class BERTModel(nn.Module):
"""BERT模型"""
def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
ffn_num_hiddens, num_heads, num_layers, dropout,
max_len=1000, key_size=768, query_size=768, value_size=768,
hid_in_features=768, mlm_in_features=768,
nsp_in_features=768):
super(BERTModel, self).__init__()
self.encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape,
ffn_num_input, ffn_num_hiddens, num_heads, num_layers,
dropout, max_len=max_len, key_size=key_size,
query_size=query_size, value_size=value_size)
self.hidden = nn.Sequential(nn.Linear(hid_in_features, num_hiddens),
nn.Tanh())
self.mlm = MaskLM(vocab_size, num_hiddens, mlm_in_features)
self.nsp = NextSentencePred(nsp_in_features)
def forward(self, tokens, segments, valid_lens=None,
pred_positions=None):
encoded_X = self.encoder(tokens, segments, valid_lens)
if pred_positions is not None:
mlm_Y_hat = self.mlm(encoded_X, pred_positions)
else:
mlm_Y_hat = None
# 用于下一句预测的多层感知机分类器的隐藏层,0是“<cls>”标记的索引
nsp_Y_hat = self.nsp(self.hidden(encoded_X[:, 0, :]))
return encoded_X, mlm_Y_hat, nsp_Y_hat
BERT 预训练数据代码
The WikiText-2 dataset
#@save
d2l.DATA_HUB['wikitext-2'] = (
'https://s3.amazonaws.com/research.metamind.io/wikitext/'
'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe')
def _read_wiki(data_dir):
file_name = os.path.join(data_dir, 'wiki.train.tokens')
with open(file_name, 'r') as f:
lines = f.readlines()
paragraphs = [line.strip().lower().split(' . ')
for line in lines if len(line.split(' . ')) >= 2]
random.shuffle(paragraphs)
return paragraphs
Generating the Next Sentence Prediction Task
def _get_next_sentence(sentence, next_sentence, paragraphs):
if random.random() < 0.5:
is_next = True
else:
# paragraphs是三重列表的嵌套
next_sentence = random.choice(random.choice(paragraphs))
is_next = False
return sentence, next_sentence, is_next
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):
nsp_data_from_paragraph = []
for i in range(len(paragraph) - 1):
tokens_a, tokens_b, is_next = _get_next_sentence(
paragraph[i], paragraph[i + 1], paragraphs)
# 考虑1个'<cls>'词元和2个'<sep>'词元
if len(tokens_a) + len(tokens_b) + 3 > max_len:
continue
tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
nsp_data_from_paragraph.append((tokens, segments, is_next))
return nsp_data_from_paragraph
Generating the Masked Language Modeling Task
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds,
vocab):
# 为遮蔽语言模型的输入创建新的词元副本,其中输入可能包含替换的“<mask>”或随机词元
mlm_input_tokens = [token for token in tokens]
pred_positions_and_labels = []
# 打乱后用于在遮蔽语言模型任务中获取15%的随机词元进行预测
random.shuffle(candidate_pred_positions)
for mlm_pred_position in candidate_pred_positions:
if len(pred_positions_and_labels) >= num_mlm_preds:
break
masked_token = None
# 80%的时间:将词替换为“<mask>”词元
if random.random() < 0.8:
masked_token = '<mask>'
else:
# 10%的时间:保持词不变
if random.random() < 0.5:
masked_token = tokens[mlm_pred_position]
# 10%的时间:用随机词替换该词
else:
masked_token = random.choice(vocab.idx_to_token)
mlm_input_tokens[mlm_pred_position] = masked_token
pred_positions_and_labels.append(
(mlm_pred_position, tokens[mlm_pred_position]))
return mlm_input_tokens, pred_positions_and_labels
def _get_mlm_data_from_tokens(tokens, vocab):
candidate_pred_positions = []
# tokens是一个字符串列表
for i, token in enumerate(tokens):
# 在遮蔽语言模型任务中不会预测特殊词元
if token in ['<cls>', '<sep>']:
continue
candidate_pred_positions.append(i)
# 遮蔽语言模型任务中预测15%的随机词元
num_mlm_preds = max(1, round(len(tokens) * 0.15))
mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens(
tokens, candidate_pred_positions, num_mlm_preds, vocab)
pred_positions_and_labels = sorted(pred_positions_and_labels,
key=lambda x: x[0])
pred_positions = [v[0] for v in pred_positions_and_labels]
mlm_pred_labels = [v[1] for v in pred_positions_and_labels]
return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]
Append the special “< mask >” tokens to the inputs
def _pad_bert_inputs(examples, max_len, vocab):
max_num_mlm_preds = round(max_len * 0.15)
all_token_ids, all_segments, valid_lens, = [], [], []
all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []
nsp_labels = []
for (token_ids, pred_positions, mlm_pred_label_ids, segments,
is_next) in examples:
all_token_ids.append(torch.tensor(token_ids + [vocab['<pad>']] * (
max_len - len(token_ids)), dtype=torch.long))
all_segments.append(torch.tensor(segments + [0] * (
max_len - len(segments)), dtype=torch.long))
# valid_lens不包括'<pad>'的计数
valid_lens.append(torch.tensor(len(token_ids), dtype=torch.float32))
all_pred_positions.append(torch.tensor(pred_positions + [0] * (
max_num_mlm_preds - len(pred_positions)), dtype=torch.long))
# 填充词元的预测将通过乘以0权重在损失中过滤掉
all_mlm_weights.append(
torch.tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * (
max_num_mlm_preds - len(pred_positions)),
dtype=torch.float32))
all_mlm_labels.append(torch.tensor(mlm_pred_label_ids + [0] * (
max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=torch.long))
nsp_labels.append(torch.tensor(is_next, dtype=torch.long))
return (all_token_ids, all_segments, valid_lens, all_pred_positions,
all_mlm_weights, all_mlm_labels, nsp_labels)
The WikiText-2 dataset for pretraining BERT
#@save
class _WikiTextDataset(torch.utils.data.Dataset):
def __init__(self, paragraphs, max_len):
# 输入paragraphs[i]是代表段落的句子字符串列表;
# 而输出paragraphs[i]是代表段落的句子列表,其中每个句子都是词元列表
paragraphs = [d2l.tokenize(
paragraph, token='word') for paragraph in paragraphs]
sentences = [sentence for paragraph in paragraphs
for sentence in paragraph]
self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[
'<pad>', '<mask>', '<cls>', '<sep>'])
# 获取下一句子预测任务的数据
examples = []
for paragraph in paragraphs:
examples.extend(_get_nsp_data_from_paragraph(
paragraph, paragraphs, self.vocab, max_len))
# 获取遮蔽语言模型任务的数据
examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)
+ (segments, is_next))
for tokens, segments, is_next in examples]
# 填充输入
(self.all_token_ids, self.all_segments, self.valid_lens,
self.all_pred_positions, self.all_mlm_weights,
self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(
examples, max_len, self.vocab)
def __getitem__(self, idx):
return (self.all_token_ids[idx], self.all_segments[idx],
self.valid_lens[idx], self.all_pred_positions[idx],
self.all_mlm_weights[idx], self.all_mlm_labels[idx],
self.nsp_labels[idx])
def __len__(self):
return len(self.all_token_ids)
Download and WikiText-2 dataset and generate pretraining examples
def load_data_wiki(batch_size, max_len):
"""加载WikiText-2数据集"""
num_workers = d2l.get_dataloader_workers()
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
paragraphs = _read_wiki(data_dir)
train_set = _WikiTextDataset(paragraphs, max_len)
train_iter = torch.utils.data.DataLoader(train_set, batch_size,
shuffle=True, num_workers=num_workers)
return train_iter, train_set.vocab
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)
for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X,
mlm_Y, nsp_y) in train_iter:
print(tokens_X.shape, segments_X.shape, valid_lens_x.shape,
pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape,
nsp_y.shape)
break
output:
Downloading ../data/wikitext-2-v1.zip from https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip...
torch.Size([512, 64]) torch.Size([512, 64]) torch.Size([512]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512])
BERT 预训练代码
A small BERT , using 2 layers , 128 hidden units , and 2 self - attention heads
net = d2l.BERTModel(len(vocab), num_hiddens=128, norm_shape=[128],
ffn_num_input=128, ffn_num_hiddens=256, num_heads=2,
num_layers=2, dropout=0.2, key_size=128, query_size=128,
value_size=128, hid_in_features=128, mlm_in_features=128,
nsp_in_features=128)
devices = d2l.try_all_gpus()
loss = nn.CrossEntropyLoss()
Computes the loss for both the masked language modeling and next sentence prediction tasks
def _get_batch_loss_bert(net, loss, vocab_size, tokens_X,
segments_X, valid_lens_x,
pred_positions_X, mlm_weights_X,
mlm_Y, nsp_y):
# 前向传播
_, mlm_Y_hat, nsp_Y_hat = net(tokens_X, segments_X,
valid_lens_x.reshape(-1),
pred_positions_X)
# 计算遮蔽语言模型损失
mlm_l = loss(mlm_Y_hat.reshape(-1, vocab_size), mlm_Y.reshape(-1)) *\
mlm_weights_X.reshape(-1, 1)
mlm_l = mlm_l.sum() / (mlm_weights_X.sum() + 1e-8)
# 计算下一句子预测任务的损失
nsp_l = loss(nsp_Y_hat, nsp_y)
l = mlm_l + nsp_l
return mlm_l, nsp_l, l
Pretrain BERT (net) on the WikiText-2 (train_iter) dataset
def train_bert(train_iter, net, loss, vocab_size, devices, num_steps):
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
trainer = torch.optim.Adam(net.parameters(), lr=0.01)
step, timer = 0, d2l.Timer()
animator = d2l.Animator(xlabel='step', ylabel='loss',
xlim=[1, num_steps], legend=['mlm', 'nsp'])
# 遮蔽语言模型损失的和,下一句预测任务损失的和,句子对的数量,计数
metric = d2l.Accumulator(4)
num_steps_reached = False
while step < num_steps and not num_steps_reached:
for tokens_X, segments_X, valid_lens_x, pred_positions_X,\
mlm_weights_X, mlm_Y, nsp_y in train_iter:
tokens_X = tokens_X.to(devices[0])
segments_X = segments_X.to(devices[0])
valid_lens_x = valid_lens_x.to(devices[0])
pred_positions_X = pred_positions_X.to(devices[0])
mlm_weights_X = mlm_weights_X.to(devices[0])
mlm_Y, nsp_y = mlm_Y.to(devices[0]), nsp_y.to(devices[0])
trainer.zero_grad()
timer.start()
mlm_l, nsp_l, l = _get_batch_loss_bert(
net, loss, vocab_size, tokens_X, segments_X, valid_lens_x,
pred_positions_X, mlm_weights_X, mlm_Y, nsp_y)
l.backward()
trainer.step()
metric.add(mlm_l, nsp_l, tokens_X.shape[0], 1)
timer.stop()
animator.add(step + 1,
(metric[0] / metric[3], metric[1] / metric[3]))
step += 1
if step == num_steps:
num_steps_reached = True
break
print(f'MLM loss {metric[0] / metric[3]:.3f}, '
f'NSP loss {metric[1] / metric[3]:.3f}')
print(f'{metric[2] / timer.sum():.1f} sentence pairs/sec on '
f'{str(devices)}')
train
Representing Text with BERT
def get_bert_encoding(net, tokens_a, tokens_b=None):
tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
token_ids = torch.tensor(vocab[tokens], device=devices[0]).unsqueeze(0)
segments = torch.tensor(segments, device=devices[0]).unsqueeze(0)
valid_len = torch.tensor(len(tokens), device=devices[0]).unsqueeze(0)
encoded_X, _, _ = net(token_ids, segments, valid_len)
return encoded_X
Consider the sentence “a crane is flying”
Now consider a sentence pair “a crane driver came” and “he just left”
QA
Q1:什么是 Embedding
A1:对于每一个词(token),学习一个长为固定长度的向量,以便于神经网络能处理。