自用matlab神经网络学习(2)点的分类

文章展示了如何在MATLAB中利用感知器神经网络进行二分类问题的训练,通过adapt函数调整权重和偏置,当误差达到要求后保存网络。之后,文章详细说明了如何加载已训练好的模型并对新数据进行预测,显示分类结果。
摘要由CSDN通过智能技术生成

使用建立好的神经网络进行分类并保存,下次可以直接调用。

训练神经网络:

%分类
clear all;
close all;
P=[-0.4 -0.4 0.5 -0.2 -0.7;-0.6 0.6 -0.4 0.3 0.8];
T=[1 1 0 0 1];
plotpv(P,T);

net=newp(minmax(P),1,'hardlim','learnpn');
hold on;                       %%%%启动图形保持功能,当前坐标轴和图形都将保持.
% 从此绘制的图形都将添加在这个图形的基础上,并自动调整坐标轴的范围。
linehandle=plot(net.iw{1},net.b{1});
E=1;
net.adaptParam.passes=10;

while mae(E)                   %%%误差达到要求才停止训练
    [net,Y,E]=adapt(net,P,T);  %%%进行感知器神经网络的训练
    linehandle=plotpc(net.IW{1},net.b{1},linehandle);
    drawnow;
end

save net1 net;                %保存训练好的神经网络
set(gcf,'position',[60,60,300,300]);

结果: 

 

调用建立好的神经网络: 

clear all;
close all;
load net1.mat;       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值