snn可用代理梯度方法实现反向传播,解决反向传播中的不可微问题
替代梯度方法是一种在机器学习和深度学习中使用的技术,特别是在训练具有非可微或不连续激活函数的神经网络时。它提供了一种在传统的基于梯度的优化方法可能不适用的情况下计算梯度和更新模型参数的方式,原因是这些函数不可导。
以下是替代梯度方法的工作原理:
1. **非可微激活函数**:在许多神经网络架构中,使用非可微的激活函数,如ReLU(修正线性单元)或二进制阶跃函数。这些函数在其导数未定义或为零的点存在。
2. **替代函数**:为了解决不可导性问题,引入了一个替代函数或代理函数。选择代理函数是可微的,并且与不可导激活函数具有一些相似性。
3. **梯度计算**:不再计算关于不可导激活函数的梯度,而是计算关于代理函数的梯度。由于代理函数是可微的,这一步可以使用标准的基于梯度的优化技术完成。
4. **参数更新**:使用使用代理函数计算的梯度来在训练期间更新模型参数。这些更新是使用梯度下降、随机梯度下降或其他优化算法执行的。
5. **反向传播**:使用微积分的链式法则,将梯度向后传播到网络中,允许计算关于模型权重和偏置的梯度。
替代梯度方法允许在包含不可微激活函数的神经网络中进行训练,这些激活函数通常被使用,因为它们引入非线性并促进模型的表达能力。通过使用可微的替代函数,网络仍然可以被有效地优化。
对于ReLU激活函数,常见的替代函数是"softplus"函数,它是平滑和可微的,在大多数情况下近似了ReLU的行为。类似地,对于二进制阶跃函数,可以使用Sigmoid或双曲正切函数作为替代函数。