Python作业五:编写一个计数器类型

作业:

编写一个计数器类型,创建的对象可以通过for循环遍历

提示:for循环可以遍历的对象是可迭代对象,内部可以通过\_\_iter\__()魔法方法获取遍历数据的迭代器

提示2:yield关键字

代码:

class Counter:
    """计数器类型,通过yield生成从0到end的整数序列."""

    def __init__(self, end):
        """
        初始化计数器实例,设置遍历结束值。

        :param end: 遍历结束的数值(包含)。
        """
        self.end = end

    def __iter__(self):
        """
        定义迭代器方法,使得Counter实例可被迭代。
        通过yield语句逐个生成从0到end的整数。
        """
        for number in range(self.end + 1):
            yield number


# 创建一个计数器实例,范围到100
counter_instance = Counter(6)

# 遍历并打印计数器的每个值
for number in counter_instance:
    print(number)

运行结果:

yield:

yield是Python中的一个关键字,主要用于生成器(generator)函数中,它具有以下关键用途:
(1)生成器函数:
        当一个函数包含yield语句时,它就变成了一个生成器函数。调用这样的函数不会立即执行函数体,而是返回一个生成器对象。
当生成器对象被迭代(如在for循环中)时,函数体开始执行,直到遇到yield语句,此时函数暂停并返回yield后面的表达式的值。
在下一次迭代时,函数从上次暂停的地方继续执行,而不是重新开始。
(2)状态保存:
        yield语句使得生成器能够记住上一次运行的状态,包括局部变量和执行位置,这样在下一次迭代时可以恢复这些状态。
这意味着生成器可以生成一个序列,而不需要一次性计算整个序列,从而节省内存。
(3)轻量级迭代:
        生成器通常用于实现轻量级的迭代,特别是处理大数据集或无限序列时,因为它们只在需要时生成下一个值。
这对于内存敏感的应用非常有用,因为它避免了存储整个序列的开销。
(4)协程(Coroutines):
        yield也可以用于实现协程,这是一种可以暂停和恢复执行的函数。协程允许在一个函数中通过yield from或await表达式与其他协程交互,实现复杂的并发控制。

  • 5
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 使用Python编写作业调度算法程序是可行的,首先需要了解需要优先处理的任务,然后按照规定的顺序进行处理。可以使用Python开发框架来实现程序的调度和执行,使用Python的内置模块来实现时序控制,以及支持多任务并发执行。 ### 回答2: 作业调度算法是指根据作业的特定需求和约束条件,以最优的方式来安排作业的执行顺序和时间。下面是用Python编写一个作业调度算法程序的基本思路: 1. 首先,定义作业类(Job)来表示一个作业,包括作业名称、优先级、执行时间等属性。 2. 定义一个作业调度类(JobScheduler),其中包含一个作业列表和一些调度算法相关的方法。 3. 提供方法来添加作业、删除作业和获取优先级最高的作业等。 4. 实现不同的调度算法,如先来先服务(FIFO),最短作业优先(SJF),优先级调度(Priority Scheduling)等。具体算法可以根据实际需求进行选择和编写。 5. 根据算法选择执行下一个作业,并更新作业的状态和执行时间。 6. 提供方法来显示当前作业列表和作业的执行结果。 下面是一个简单的示例代码,使用最短作业优先算法来调度作业: ```python class Job: def __init__(self, name, priority, time): self.name = name self.priority = priority self.time = time class JobScheduler: def __init__(self): self.jobs = [] def add_job(self, job): self.jobs.append(job) def remove_job(self, job): self.jobs.remove(job) def get_next_job(self): self.jobs.sort(key=lambda x: x.time) # 按执行时间排序 return self.jobs[0] def schedule_jobs(self): while self.jobs: next_job = self.get_next_job() # 获取优先级最高的作业 print("执行作业:", next_job.name) next_job.time -= 1 # 执行时间减1 if next_job.time == 0: self.remove_job(next_job) # 完成作业 scheduler = JobScheduler() job1 = Job("Job 1", 2, 5) job2 = Job("Job 2", 1, 3) job3 = Job("Job 3", 3, 4) scheduler.add_job(job1) scheduler.add_job(job2) scheduler.add_job(job3) scheduler.schedule_jobs() ``` 该程序会根据短作业优先算法来调度作业的执行顺序,每次执行一个作业,直到所有作业都完成为止。以上就是用Python编写作业调度算法程序的基本思路和示例代码。 ### 回答3: 作业调度算法是操作系统中的重要概念之一,它用于决定多个作业的执行顺序,其中包括作业的优先级和到达时间等因素。下面是一个使用Python编写作业调度算法程序示例: ```python class Job: def __init__(self, id, priority, arrival_time): self.id = id self.priority = priority self.arrival_time = arrival_time def schedule(jobs): # 按照作业的优先级和到达时间排序 jobs.sort(key=lambda x: (x.priority, x.arrival_time)) # 打印作业执行顺序 for job in jobs: print("执行作业{},优先级:{},到达时间:{}".format(job.id, job.priority, job.arrival_time)) # 创建作业列表 jobs = [ Job(1, 3, 5), Job(2, 1, 2), Job(3, 2, 3) ] # 调用作业调度函数 schedule(jobs) ``` 上述程序中,首先定义了一个作业类Job,其中包含了作业的ID、优先级和到达时间等属性。然后使用sort函数对作业列表进行排序,排序规则为先按优先级升序,再按到达时间升序。最后通过遍历作业列表,按照排序结果输出每个作业的相关信息。 对于输入的作业列表,程序将根据作业的优先级和到达时间,按照升序的方式进行排序,然后按序输出每个作业的ID、优先级和到达时间等信息,这样就得到了作业的执行顺序。具体的作业调度策略可以根据实际需求进行修改和扩展。 需要注意的是,上述示例只是作业调度算法的简单示例,实际的作业调度问题可能更加复杂,需要考虑更多因素。这只是一个基于优先级和到达时间的简单示例,仅供参考。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bug.ink

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值