卡尔曼滤波

一,推导

卡尔曼滤波详细推导_kalman滤波推导_qq_34911636的博客-CSDN博客卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法,由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。卡尔曼滤波器的本质是线性最小均方误差估计,而均方误差是协方差矩阵的迹。卡尔曼滤波有好几种公式推导方法,本文从最小二乘估计的方法推导卡尔曼滤波过程。1、系统的变量定义为系统的真值为系统的测量值为卡尔曼滤波增益系统的状态转移矩阵为系统的输入增益矩阵为系统的量测矩阵为最优估计协方_kalman滤波推导https://blog.csdn.net/qq_34911636/article/details/108070531?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522169546382316777224458127%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=169546382316777224458127&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-2-108070531-null-null.142^v94^insert_down28v1&utm_term=%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2%E7%9A%84%E6%8E%A8%E5%AF%BC&spm=1018.2226.3001.4187

NO.1  牢记系统的变量定义(前提)

x(k)为系统的真值

z(k)为系统的测量值

k(k)为卡尔曼滤波增益

A系统的状态转移矩阵

B为系统的输入增益矩阵

H为系统的量测矩阵

P(k|k)为最优估计协方差矩阵

P(k|k−1)为预测值协方差矩阵

x(k|k)为k时刻的最优估计值

x(k|k−1)为k时刻的预测值,系统的后验概率估计

x(k−1|k−1)为k-1时刻的最优估计值

u(k)为系统的测量噪声,其均值E(u(k))=0,协方差矩阵为R且服从正态分布的测量噪声

w(k)为系统的过程噪声,其均值E(w(k))=0,协方差矩阵为Q且服从正态分布的过程噪声

NO.2  系统的状态方程(通过已知的公式去推)

x(k)=Ax(k−1)+Bu(k)+w(k) .............(1)

z(k)=Hx(k)+u(k)..........................................(2)

x(k|k−1)=Ax(k−1|k−1)+Bu(k)..............................(3)

x(k|k)=x(k|k−1)+k(k)(z(k)−Hx(k|k−1)).....................(4)

公式(1)为系统状态转移方程,(2)为系统的测量方程

(3)为预测方程(后验概率估计),(4)为最佳估计方程

卡尔曼滤波器最终从上述公式求解出最优估计值x(k|k)

,在求解最优估计值时首先需要推导出公式(4)的卡尔

曼滤波增益k(k),具体的公式推导见下节 

NO.3  知之为知之,不知为不知,有些东西不用刻意的吹毛求疵,是什么你就知道什么就好了

二,代码复现

 
 
import numpy as np
import math
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
 
 
#定义一个产生符合高斯分布的函数,均值为loc=0.0,标准差为scale=sigma,输出的大小为size
def gaussian_distribution_generator(sigma):
    return np.random.normal(loc=0.0,scale=sigma,size=None)
 
# 状态转移矩阵,上一时刻的状态转移到当前时刻
A = np.array([[1,1],[0,1]])
 
# 过程噪声w协方差矩阵Q,P(w)~N(0,Q),噪声来自真实世界中的不确定性
Q = np.array([[0.01,0],[0,0.01]])
 
# 测量噪声协方差矩阵R,P(v)~N(0,R),噪声来自测量过程的误差
R = np.array([[1,0],[0,1]])
 
# 传输矩阵/状态观测矩阵H
H = np.array([[1,0],[0,1]])
 
# 控制输入矩阵B
B = None
 
# 初始位置和速度
X0 = np.array([[0],[1]])
 
# 状态估计协方差矩阵P初始化
P =np.array([[1,0],[0,1]])
 
if __name__ == "__main__":
    #---------------------初始化-----------------------------
    #真实值初始化 这里还要再写一遍np.array是保证它的类型是数组array
    X_true = np.array(X0)
    #后验估计值Xk的初始化
    X_posterior = np.array(X0)
    #第k次误差的协方差矩阵的初始化
    P_posterior = np.array(P)
 
    #创建状态变量的真实值的矩阵 状态变量1:速度 状态变量2:位置
    speed_true = []
    position_true = []
 
    #创建测量值矩阵
    speed_measure = []
    position_measure = []
 
    #创建状态变量的先验估计值
    speed_prior_est = []
    position_prior_est = []
 
    #创建状态变量的后验估计值
    speed_posterior_est = []
    position_posterior_est = []
 
    #---------------------循环迭代-----------------------------
    #设置迭代次数为30次
 
    for i in range(30):
        #--------------------建模真实值-----------------------------
 
        # 生成过程噪声w w=[w1,w2].T(列向量)
        # Q[0,0]是过程噪声w的协方差矩阵的第一行第一列,即w1的方差,Q[1,1]是协方差矩阵的第二行第二列,即为w2的方差
        # python的np.random.normal(loc,scale,size)函数中scale输入的是标准差,所以要开方
        Q_sigma = np.array([[math.sqrt(Q[0,0]),Q[0,1]],[Q[1,0],math.sqrt(Q[1,1])]])
        w = np.array([[gaussian_distribution_generator(Q_sigma[0, 0])],
                      [gaussian_distribution_generator(Q_sigma[1, 1])]])
        # print('00',Q[0,0],'它的类型是',type(Q[0,0]))
        # print('开根号的00', Q_sigma[0, 0], '它的类型是', type(Q_sigma[0, 0]))
        # print('00的平方根',math.sqrt(Q[0,0]),"它的类型是",type(math.sqrt(Q[0,0])))
        # print('w[',i,']=',w)
 
        # 真实值X_true 得到当前时刻的状态;之前我一直在想它怎么完成从Xk-1到Xk的更新,实际上在代码里面直接做迭代就行了,这里是不涉及数组下标的!!!
        #dot函数用于矩阵乘法,对于二维数组,它计算的是矩阵乘积
        X_true = np.dot(A, X_true) + w
 
        # 速度的真实值是speed_true 使用append函数可以把每一次循环中产生的拼接在一起,形成一个新的数组speed_true
        speed_true.append(X_true[1,0])
        position_true.append(X_true[0,0])
        #print(speed_true)
 
 
        # --------------------生成观测值-----------------------------
        # 生成过程噪声
        R_sigma = np.array([[math.sqrt(R[0,0]),R[0,1]],[R[1,0],math.sqrt(R[1,1])]])
        v = np.array([[gaussian_distribution_generator(R_sigma[0,0])],[gaussian_distribution_generator(R_sigma[1,1])]])
 
        # 生成观测值Z_measure 取H为单位阵
        Z_measure = np.dot(H, X_true) + v
        speed_measure.append(Z_measure[1,0]),
        position_measure.append(Z_measure[0,0])
 
        # --------------------进行先验估计-----------------------------
        # 开始时间更新
        # step1:基于k-1时刻的后验估计值X_posterior建模预测k时刻的系统状态先验估计值X_prior
        # 此时模型控制输入U=0
        X_prior = np.dot(A, X_posterior)
        # 把k时刻先验预测值赋给两个状态分量的先验预测值 speed_prior_est = X_prior[1,0];position_prior_est=X_prior[0,0]
        # 再利用append函数把每次循环迭代后的分量值拼接成一个完整的数组
        speed_prior_est.append(X_prior[1,0])
        position_prior_est.append(X_prior[0,0])
 
        # step2:基于k-1时刻的误差ek-1的协方差矩阵P_posterior和过程噪声w的协方差矩阵Q 预测k时刻的误差的协方差矩阵的先验估计值 P_prior
        P_prior_1 = np.dot(A, P_posterior)
        P_prior = np.dot(P_prior_1, A.T) + Q
 
        # --------------------进行状态更新-----------------------------
        # step3:计算k时刻的卡尔曼增益K
        k1 = np.dot(P_prior, H.T)
        k2 = np.dot(H, k1) + R
        #k3 = np.dot(np.dot(H, P_prior), H.T) + R  k2和k3是两种写法,都可以
        K = np.dot(k1, np.linalg.inv(k2))
 
        # step4:利用卡尔曼增益K 进行校正更新状态,得到k时刻的后验状态估计值 X_posterior
        X_posterior_1 = Z_measure -np.dot(H, X_prior)
        X_posterior = X_prior + np.dot(K, X_posterior_1)
        # 把k时刻后验预测值赋给两个状态分量的后验预测值 speed_posterior_est = X_posterior[1,0];position_posterior_est = X_posterior[0,0]
        speed_posterior_est.append(X_posterior[1,0])
        position_posterior_est.append(X_posterior[0,0])
 
        # step5:更新k时刻的误差的协方差矩阵 为估计k+1时刻的最优值做准备
        P_posterior_1 = np.eye(2) - np.dot(K, H)
        P_posterior = np.dot(P_posterior_1, P_prior)
 
    # ---------------------再从step5回到step1 其实全程只要搞清先验后验 k的自增是隐藏在循环的过程中的 然后用分量speed和position的append去记录每一次循环的结果-----------------------------
 
    # 可视化显示 画出速度比较和位置比较
    if True:
        # 画出1行2列的多子图
        fig, axs = plt.subplots(1,2)
        #速度
        axs[0].plot(speed_true,"-",color="blue",label="速度真实值",linewidth="1")
        axs[0].plot(speed_measure,"-",color="grey",label="速度测量值",linewidth="1")
        axs[0].plot(speed_prior_est,"-",color="green",label="速度先验估计值",linewidth="1")
        axs[0].plot(speed_posterior_est,"-",color="red",label="速度后验估计值",linewidth="1")
        axs[0].set_title("speed")
        axs[0].set_xlabel('k')
        axs[0].legend(loc = 'upper left')
 
 
        #位置
        axs[1].plot(position_true,"-",color="blue",label="位置真实值",linewidth="1")
        axs[1].plot(position_measure,"-",color="grey",label="位置测量值",linewidth="1")
        axs[1].plot(position_prior_est,"-",color="green",label="位置先验估计值",linewidth="1")
        axs[1].plot(position_posterior_est,"-",color="red",label="位置后验估计值",linewidth="1")
        axs[1].set_title("position")
        axs[1].set_xlabel('k')
        axs[1].legend(loc = 'upper left')
 
        #     调整每个子图之间的距离
        plt.tight_layout()
        plt.figure(figsize=(60, 40))
        plt.show()

三,运行结果

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值