彻底搞懂cuda,cudnn和pytorch中的所有版本命令(windows版本)

第一种:nvidia-smi

这个“不是”当前的cuda版本,而是当前Driver支持的最高CUDA版本。CUDA向下兼容,你的CUDA必须要小于等于这个版本号。

第二种:nvcc -V

  • 显示 CUDA Toolkit 的版本(如 12.5)。
  • 这表示安装的 CUDA 编译工具(nvcc)的版本。
  • nvcc是CUDA Runtime的编译器。输出的版本号就是机器上CUDA Runtime的版本号

第三种:torch.version.cuda

它的输出不是当前CUDA的版本号!!!而是当前torch支持的最高CUDA版本

第四种:torch.backends.cudnn.version()

注意,这个并不是你本地下载的cudnn版本!

PyTorch 包含一个 内部捆绑的 cuDNN 版本,而非直接使用你手动配置的 cuDNN。

通过 torch.backends.cudnn.version() 获取到的版本号是 PyTorch 捆绑的 cuDNN 版本,而非你手动安装的版本。你看到的 90100 表示 cuDNN 版本是 9.1.0,这是 PyTorch 官方和 CUDA 12.4 兼容的版本。而其实我本地实际用的是8.8.1版本的cudnn.

参考文献:

彻底搞清楚CUDA和cuDNN版本问题_cuda cudnn版本-CSDN博客

<think>嗯,用户现在想卸载已经安装的CUDATorch版本。之前他们问过PyTorchDGL的版本适配问题,现在可能遇到了环境配置的问题,需要清理现有安装。首先,我得考虑用户的操作系统,但用户没说明,不过之前的回答都是通用的,可能用户用的是Linux或者Windows。不过CUDA的卸载在LinuxWindows上步骤不同,可能需要分别说明。 用户可能的情况是,他们在安装或升级PyTorch时遇到了版本冲突,或者需要安装特定版本CUDA来适配其他库,比如DGL。这时候需要彻底卸载现有的CUDAPyTorch,确保没有残留文件,才能正确安装新版本。 首先,卸载PyTorchPyTorch通常通过pip或conda安装,所以需要根据用户的安装方式来给出对应的卸载命令。比如,如果用户用pip安装的,可以用pip uninstall torch,但可能还有torchvision、torchaudio等依赖包,需要一并卸载。如果是conda安装的,需要用conda remove。另外,用户可能同时使用这两种包管理器,需要提示他们检查环境。 然后是CUDA的卸载。CUDA的卸载比较复杂,尤其是在Linux上,因为涉及到系统级的安装。在Linux上,CUDA可能通过runfile或者deb包安装,卸载方法不同。需要指导用户找到正确的卸载方式,比如使用/usr/local/cuda-版本/bin下的卸载脚本。而在Windows上,可能需要通过控制面板的程序卸载功能来移除NVIDIA的CUDA工具包。 还要提醒用户检查是否有多个CUDA版本共存的情况,比如软链接/usr/local/cuda指向的版本,可能需要调整环境变量。此外,用户可能安装了cuDNN,但卸载CUDA时不会自动移除cuDNN,需要手动删除相关文件,或者告知用户如果需要的话。 另外,用户可能不知道如何验证卸载是否成功,可以建议他们运行nvidia-smi(这其实显示的是驱动支持的CUDA版本,不是运行时版本)或者检查nvcc --version,但nvcc可能随着CUDA工具包卸载而消失。对于PyTorch,卸载后尝试导入torch应该会报错。 还要考虑到用户可能存在的权限问题,比如在Linux下卸载CUDA可能需要sudo权限。此外,提醒用户重新安装前清理pip缓存或conda缓存,避免旧版本被重新安装。 总结一下,回答需要分步骤,明确针对不同安装方式操作系统给出对应的卸载方法,并给出验证卸载成功的命令。同时,要提醒用户注意依赖关系后续安装的步骤,确保环境干净。</think>以下是卸载 CUDA PyTorch 的通用方法,分平台说明: --- ### **1. 卸载 PyTorch** #### (1) **通过 pip 安装的 PyTorch** ```bash # 卸载核心包及依赖 pip uninstall torch torchvision torchaudio # 如果存在残留,强制删除(注意路径) pip list | grep torch | xargs pip uninstall -y ``` #### (2) **通过 conda 安装的 PyTorch** ```bash conda uninstall pytorch torchvision torchaudio # 清理缓存 conda clean --all ``` --- ### **2. 卸载 CUDA** #### (1) **Linux 系统** - **通过 runfile 安装的 CUDA**: ```bash # 进入 CUDA 安装目录的 bin 文件夹 cd /usr/local/cuda-XX.X/bin # XX.X 为具体版本号(如11.8) sudo ./cuda-uninstaller # 执行卸载脚本 # 删除残留文件 sudo rm -rf /usr/local/cuda-XX.X ``` - **通过 deb 包安装的 CUDA**: ```bash # 查看已安装的 CUDA 包名 dpkg -l | grep cuda # 卸载对应包(例如 cuda-11-8) sudo apt-get --purge remove cuda-11-8 ``` #### (2) **Windows 系统** 1. 打开 **控制面板 → 程序 → 卸载程序** 2. 找到所有名称含 `NVIDIA CUDA Toolkit XX.X` 的条目,右键卸载 3. 手动删除残留目录(默认路径): ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXX.X ``` --- ### **3. 清理残留文件** #### (1) **环境变量检查** - 编辑 `~/.bashrc` 或 `~/.zshrc`(Linux)或系统环境变量(Windows),删除所有 `CUDA_HOME`、`PATH` 中与 CUDA 相关的路径。 #### (2) **缓存清理** ```bash # 清理 pip 缓存 pip cache purge # 清理 conda 缓存(若使用 conda) conda clean --all ``` --- ### **4. 验证卸载** #### (1) **检查 PyTorch** ```python python -c "import torch; print(torch.__version__)" # 应报错 `No module named 'torch'` ``` #### (2) **检查 CUDA** - Linux: ```bash nvcc --version # 应提示命令未找到 ls /usr/local/cuda* # 确认目录已删除 ``` - Windows: - 检查 `C:\Program Files\NVIDIA GPU Computing Toolkit` 下是否无 CUDA 文件夹。 --- ### **5. 注意点** 1. **驱动保留**:卸载 CUDA 工具包不会删除 NVIDIA 显卡驱动,如需卸载驱动: - Linux:`sudo apt-get purge nvidia-*` - Windows:通过设备管理器卸载显卡驱动。 2. **多版本共存**:若系统有多个 CUDA 版本,需确保环境变量指向正确版本。 建议操作前备份重要数据,避免误删系统文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值