第一种:nvidia-smi
这个“不是”当前的cuda版本,而是当前Driver支持的最高CUDA版本。CUDA向下兼容,你的CUDA必须要小于等于这个版本号。
第二种:nvcc -V
- 显示 CUDA Toolkit 的版本(如 12.5)。
- 这表示安装的 CUDA 编译工具(
nvcc
)的版本。 nvcc
是CUDA Runtime的编译器。输出的版本号就是机器上CUDA Runtime
的版本号
第三种:torch.version.cuda
它的输出不是当前CUDA的版本号!!!而是当前torch支持的最高CUDA版本
第四种:torch.backends.cudnn.version()
注意,这个并不是你本地下载的cudnn版本!
PyTorch 包含一个 内部捆绑的 cuDNN 版本,而非直接使用你手动配置的 cuDNN。
通过 torch.backends.cudnn.version()
获取到的版本号是 PyTorch 捆绑的 cuDNN 版本,而非你手动安装的版本。你看到的 90100
表示 cuDNN 版本是 9.1.0,这是 PyTorch 官方和 CUDA 12.4 兼容的版本。而其实我本地实际用的是8.8.1版本的cudnn.