pytorch卸载cuda+cudnn并重新配置GPU环境,亲测有效

本文详细描述了如何在Windows系统上卸载过时的CUDA和CUDNN,查看支持的最高CUDA版本,选择并安装CUDA,配置环境变量,安装CUDNN,以及在Anaconda中创建并安装GPU版本的PyTorch、torchvision和torchaudio的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch卸载cuda+cudnn

一、卸载cuda

进入【控制面板】,点击【卸载程序】
在这里插入图片描述

将红色框中带版本号的都卸载
在这里插入图片描述

二、删除cudnn配置

1、进入安装路径
将以下版本号文件直接删除
在这里插入图片描述

pytorch配置GPU环境

一、查看支持的cuda最高版本

1、win+r,输入cmd,【回车】进入命令行窗口
在这里插入图片描述
2、在命令行输入 nvidia-smi

nvidia-smi

在这里插入图片描述
发现,最高支持版本为11.7(在安装时需要选择小于等于11.7版本的cuda)

二、安装cuda

cuda官网
1、选择对应版本的cuda进行下载(我选择下载了11.7.1版本的)
在这里插入图片描述

点进去后,下载在线的安装包,该安装包比较小
在这里插入图片描述
安装包如下
在这里插入图片描述
双击运行安装包&

### 如何正确地卸载重新安装CUDA #### 卸载现有CUDA版本 为了确保旧版CUDA完全移除,需执行一系列操作来清理环境: 停止图形界面服务可以防止与NVIDIA驱动冲突: ```bash sudo service lightdm stop ``` 切换到多用户模式进一步保障安全: ```bash sudo systemctl isolate multi-user.target ``` 接着通过命令行彻底删除NVIDIA驱动组件: ```bash modprobe -r nvidia-drm ``` 对于已安装的CUDA工具包,官方推荐使用专门脚本进行清除[^3]。如果上述方法未能成功定位所有残留文件,则可尝试手动方式继续排查。 #### 清理残留配置项 在某些情况下,仅依靠基础指令可能无法达到理想效果。此时建议采用更激进手段——即反复运行卸载流程直至系统报告未发现任何关联条目为止。这一步骤同样适用于处理其他依赖库如`numpy`等软件包的情况[^2]。 #### 准备工作前注意事项 准备重装之前,请先确认目标平台具体需求以及兼容性列表。例如,在本地计算机上部署时要留意操作系统版本;而在云端实例中则要考虑虚拟化技术的影响因素[^1]。 #### 正式开始全新安装过程 获取最新稳定发行版链接后按照指引逐步完成设置向导中的各项选项设定即可。特别提醒一点是要记得把新路径加入全局变量里以便后续调用方便[^4]: ```bash export PATH=<path-to-cuda-folder>/bin:$PATH export LD_LIBRARY_PATH=<path-to-cuda-folder>/lib64:$LD_LIBRARY_PATH ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值