头歌人工智能平台下的蚁群算法,以下是本人对算法的补充
import numpy as np
import math
import random
import time
# 31个城市的坐标
city_condition=[[106.54,29.59],[ 91.11,29.97],[ 87.68,43.77],[106.27,38.47],[111.65,40.82],
[108.33,22.84],[126.63,45.75],[125.35,43.88],[123.38,41.8 ],[114.48,38.03],[112.53,37.87],
[101.74,36.56],[117.0,36.65],[113.6,34.76],[118.78,32.04],[117.27,31.86],
[120.19,30.26],[119.3,26.08],[115.89,28.68],[113.0,28.21],[114.31,30.52],
[113.23,23.16],[121.5,25.05],[110.35,20.02],[103.73,36.03],[108.95,34.27],
[104.06,30.67],[106.71,26.57],[102.73,25.04],[114.1,22.2 ],[113.33,22.13]]
"""
距离矩阵和总距离的计算
"""
#距离矩阵
city_count = 31
Distance = np.zeros((city_count, city_count))
for i in range(city_count):
for j in range(city_count):
if i != j:
Distance[i][j] = math.sqrt((city_condition[i][0] - city_condition[j][0]) ** 2 + (city_condition[i][1] - city_condition[j][1]) ** 2)
else:
Distance[i][j] = 100000
#适应度计算
def get_total_distance(path_new):
distance = 0
# ********** Begin **********#
for i in range(city_count):
if i == city_count - 1: # 最后一个城市回到起点
distance += Distance[path_new[i]][path_new[0]]
else:
distance += Distance[path_new[i]][path_new[i + 1]]
return distance
# ********** End **********#
return distance
"""
两个难点
1.城市的选择:初始城市选择和下一个城市的选择设计
2.信息素的更新
"""
def main():
##参数设计
# 蚂蚁数量
AntCount = 10
# 城市数量
city_count = 31
# 信息素
alpha = 1 # 信息素重要程度因子
beta = 5 # 启发函数重要程度因子
rho = 0.1 #挥发速度
iter = 0 # 迭代初始值
iteration = 200 # 最大迭代值
Q = 1
# 初始信息素矩阵,全是为1组成的矩阵
pheromonetable = np.ones((city_count, city_count))
# print(pheromonetable)
# 候选集列表
candidate = np.zeros((AntCount, city_count)).astype(int) # 存放100只蚂蚁的路径(一只蚂蚁一个路径),一共就Antcount个路径,一共是蚂蚁数量*31个城市数量
path_best = np.zeros((iteration, city_count)) # path_best存放的是相应的,每次迭代后的最优路径,每次迭代只有一个值
# 存放每次迭代的最优距离
distance_best = np.zeros(iteration)
#怎么处理对角线的元素是0的情况
etable = 1.0 / Distance # 倒数矩阵
while iter < iteration:
"""
#路径创建
"""
## first:蚂蚁初始点选择
# ********** Begin **********#
start_cities = random.choices(range(city_count), k=AntCount) # 随机选择蚂蚁的起始城市
candidate[:, 0] = start_cities # 将每个蚂蚁的起始城市记录在候选集列表中
# ********** End **********#
## second:选择下一个城市选择
length = np.zeros(AntCount)
for i in range(AntCount):
# 移除已经访问的第一个元素
unvisit = list(range(city_count)) # 列表形式存储没有访问的城市编号
visit = candidate[i, 0] # 当前所在点,第i个蚂蚁在第一个城市
unvisit.remove(visit) # 在未访问的城市中移除当前开始的点
for j in range(1, city_count):#访问剩下的city_count个城市,city_count次访问
protrans = np.zeros(len(unvisit))#每次循环都更改当前没有访问的城市的转移概率矩阵1*30,1*29,1*28...
# 下一城市的概率函数
for k in range(len(unvisit)):
# 计算当前城市到剩余城市的(信息素浓度^alpha)*(城市适应度的倒数)^beta
# etable[visit][unvisit[k]],(alpha+1)是倒数分之一,pheromonetable[visit][unvisit[k]]是从本城市到k城市的信息素
# ********** Begin**********#
protrans[k] = (pheromonetable[visit][unvisit[k]] ** alpha) * (etable[visit][unvisit[k]] ** beta)
# ********** End **********#
# 累计概率,轮盘赌选择
cumsumprobtrans = (protrans / sum(protrans)).cumsum()
cumsumprobtrans -= np.random.rand()
# 求出离随机数产生最近的索引值
k = unvisit[list(cumsumprobtrans > 0).index(True)]
# 下一个访问城市的索引值
candidate[i, j] = k
unvisit.remove(k)
length[i] += Distance[visit][k]
visit = k # 更改出发点,继续选择下一个到达点
length[i] += Distance[visit][candidate[i, 0]]#最后一个城市和第一个城市的距离值也要加进去
"""
更新路径等参数
"""
# 如果迭代次数为一次,那么无条件让初始值代替path_best,distance_best.
if iter == 0:
distance_best[iter] = length.min()
path_best[iter] = candidate[length.argmin()].copy()
else:
# 如果当前的解没有之前的解好,那么当前最优还是为之前的那个值;并且用前一个路径替换为当前的最优路径
if length.min() > distance_best[iter - 1]:
distance_best[iter] = distance_best[iter - 1]
path_best[iter] = path_best[iter - 1].copy()
else: # 当前解比之前的要好,替换当前解和路径
distance_best[iter] = length.min()
path_best[iter] = candidate[length.argmin()].copy()
"""
信息素的更新
"""
#信息素的增加量矩阵
changepheromonetable = np.zeros((city_count, city_count))
for i in range(AntCount):
for j in range(city_count - 1):
# 当前路径比如城市23之间的信息素的增量:1/当前蚂蚁行走的总距离的信息素
# ********** Begin **********#
changepheromonetable[candidate[i, j]][candidate[i, j + 1]] += Q / length[i]
# ********** End **********#
#最后一个城市和第一个城市的信息素增加量
changepheromonetable[candidate[i, j + 1]][candidate[i, 0]] += Q / length[i]
#信息素更新的公式:
# ********** Begin **********#
pheromonetable *= (1 - rho) # 先挥发
for i in range(AntCount):
for j in range(city_count - 1):
pheromonetable[candidate[i, j]][candidate[i, j + 1]] += changepheromonetable[candidate[i, j]][candidate[i, j + 1]]
pheromonetable[candidate[i, city_count - 1]][candidate[i, 0]] += changepheromonetable[candidate[i, city_count - 1]][candidate[i, 0]]
# ********** End **********#
iter += 1
return distance_best,path_best,iteration