先算乘除再算加减,有括号的先算括号内的,相信这句小学时学的口诀一直印在我们心中。正如我们小学数学算式计算的那样,c语言表达式也有自己的运算规则。
表达式求值是由操作符的优先级和结合性决定。
但在运算过程中,不同类型的数据是怎么处理的呢?
一.整型提升
C的整型算术运算总是至少以缺省整型类型的精度来进行的。为了获得这个精度,表达式中的字符和短整型操作数在使用之前被转换为普通整型,这种转换称为整型提升。
表达式的整型运算要在CPU的相应运算器件内执行,CPU内整型运算器(ALU)的操作数的字节长度,一般就是int的字节长度,同时也是CPU的通用寄存器的长度。
因此,即使两个char类型的相加,在CPU执行时实际上也要先转换为CPU内整型操作数的标准长
度。
通用CPU(general-purpose CPU)是难以直接实现两个8比特字节直接相加运算(虽然机器指令中可能有这种字节相加指令)。所以,表达式中各种长度可能小于int长度的整型值,都必须先转换为int或unsigned int,然后才能送入CPU去执行运算。
对于以下这段代码,求出值很简单,可是计算机是怎么求出的值呢。
分析如下:
a,b,c三个变量都是char类型的,那么它们所占空间都应该是一个字节。但CPU中的整型运算器操作数确是4个字节。所以为了实现其运算,就需要对其进行整型提升。
a的补码是:
00000001
b的补码是:
00000010
进行整型提升,变为四个字节,这就与运算器相符。
a提升后的补码为:
00000000 00000000 00000000 00000001
b提升后的补码为:
00000000 00000000 00000000 00000010
c = a + b
00000000 00000000 00000000 00000001
+
00000000 00000000 00000000 00000010
=
00000000 00000000 00000000 00000011
但c是char类型,只能存储一个字节,所以就会发生截断,只保留最后的那一个字节。
c的补码是:
00000011
调用printf函数,输出c的时候,需要对c进行整形提升。
c提升后的补码为:
00000000 00000000 00000000 00000011
正数的原码,反码,补码都一样。所以我们就可以得到c的值为3。
整型提升的规则:
1.有符号数:
高位补充符号位
1.正数的整型提升
char a=1
00000001
正数的符号位为0,高位用0来补充。
00000000 00000000 00000000 00000001
故,对于正数,高位补0。
2.负数的整型提升
char a=-1
a的原码是:
10000001
a的反码是:
11111110
a的补码是:
11111111
负数的符号位为1,高位用1来补充。
11111111 11111111 11111111 11111111
故,对于负数,高位补1。
ps:
原码→反码:
符号位不变,其余位按位取反
反码→补码:
反码+1
2.无符号数
高位补充0
练习:
char a=127,b=5,c=a+b
c应该是多少?132?
127+5=132,按照数学上来说就是这个结果,可是当我们在编译器运行后,却不是这个答案。这时大部分解释是溢出了,然后就不在深入解释了。通过刚才的整型提升,我们来推一遍,就能知道为什么编译器会给出这个答案。
a的补码:
01111111
b的补码:
00000101
a+b运算时发生整型提升:
00000000 00000000 00000000 01111111
+
00000000 00000000 00000000 00000101
=
00000000 00000000 00000000 10000100
储存在c中,发生截断,只保留最低的那个字节。
10000100
对c输出时,进行整型提升
11111111 11111111 11111111 10000100
数据一补码的形式在计算机中存储,原码是数据的二进制,所以将补码转换成原码,才是呈现在我们面前的数。
反码:
11111111 11111111 11111111 10000011
原码
10000000 00000000 00000000 01111100
所以,输出的c是-124。
通过此练习,我们就可以清楚的知道,编译器到底怎么得出的溢出之后的值。
ps:
补码→反码:
补码-1
反码→原码:
符号位不变,其余位按位取反。
在进行计算时,是通过补码相加减。呈现在我们面前,是通过原码实现。
验证:
观察以下代码
通过sizeof,我们可以测出c的大小是一个字节。但当是+c,-c,这种表达式类型时,大小确变成了4个字节。
因此,我们可以确定,像char,short,这种小于int的,在表达式中都会发生整型提升。
二.算数转换
如果某个操作符的各个操作数属于不同的类型,那么除非其中一个操作数的转换为另一个操作数的类型,否则操作就无法进行。下面的层次体系称为寻常算术转换。
1ong double
double
float
unsigned 1ong intlong int
unsigned int
int
如果某个操作数的类型在上面这个列表中排名较低,那么首先要转换为另外一个操作数的类型后执行运算。
换句话说,就是向字节长的转换,如果字节相同,就向精度高的转换。