逻辑回归(Logistic Regression)详解与实战

1. 逻辑回归简介

逻辑回归是一种用于处理二分类问题的广义线性模型,尽管名字中包含“回归”,但它实际上是一种分类方法。逻辑回归通过引入Sigmoid函数(或称为逻辑函数)将线性回归的预测值映射到[0, 1]区间内,从而得到分类的概率。

2. Sigmoid函数

Sigmoid函数的形式为:

\sigma \left ( z \right ) =\frac{1}{1+e^{-z}}

其中,z 是线性回归的预测值。Sigmoid函数将z 映射到0和1之间,从而表示正类(通常是1)和负类(通常是0)的概率。

Sigmoid函数的图像为:

3. 逻辑回归模型

逻辑回归的模型可以表示为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值