混合整数线性规划——选址问题(决策变量0-1问题)MATLAB

文章讲述了某快餐连锁公司如何利用整数线性规划(intlinprog)来解决门店选址问题。在考虑地理位置限制和投资预算(650万元)的情况下,通过设置0-1变量,确定各地点开设快餐店的选择,以实现收益最大化。最终计算得出最大收益为50万元。
摘要由CSDN通过智能技术生成
问题:
某快餐连锁经营公司有7个地点(A1,A2,…,A7)可以设立快餐
店,由于地理位置因素,设立快餐店时必须满足以下要求: A1,A2,A3三个地点最多
可选两个,A4和A5至少选取一个,A6和A7至少选取一个 。已知各个地点设立快餐店
的投入和预计收益如表所示。

 已知目前公司有650万元可以投资。问:怎样投资收益最高?

知识点:

数学规划中的变量(部分或全部)限制为整数时,称 为整数规划。
对于整数线性规划模型大致可分为两类
1)变量全限制为整数时,称纯(完全)整数规划。
2)变量部分限制为整数的,称混合整数规划。
[x,fval,exitflag,output] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options)
分析:
首先引入0-1变量 𝒙 𝒊 𝒙 𝒊 =1表示选择 𝑨 𝒊 地址, 𝒙 𝒊 = 𝟎 表示不选择 𝑨 𝒊 地址
代码:
clear;clc;
c = [-10 -11 -8 -12 -15 -12 -5];
intcon = 1:7; 
A = [103 140 95 150 193 160 80; 1 1 1 0 0 0 0; 0 0 0 -1 -1 0 0; 0 0 0 0 0 -1 -1];
b = [650;2;-1;-1];
lb = zeros(7,1); %下限为0
ub = ones(7,1); %上限为1。变量取整数,则取值的可能为0或1
[x,f] = intlinprog(c,intcon,A,b,[],[],lb,ub)
maxf = -f
结果:

maxf =

    50

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值