代码随想录算法训练营day11|239.滑动窗口最大值 347.前k个高频元素 总结

 239. 滑动窗口最大值 (一刷至少需要理解思路

之前讲的都是栈的应用,这次该是队列的应用了。

本题算比较有难度的,需要自己去构造单调队列,建议先看视频来理解。 

题目链接/文章讲解/视频讲解:代码随想录

 思路

 

 

 

 

 

public static int[] maxSlidingWindow(int[] nums, int k) {
        int len= nums.length-k+1;
        int[] res = new int[len];
        int num=0;
        MyQueue myQueue = new MyQueue();
//        先把前k个元素放入队列
        for (int i = 0; i < k; i++) {
            myQueue.push(nums[i]);
        }
        res[num++] = myQueue.peek();
        for (int i = k; i < nums.length; i++) {
//            滑动窗口移除最前面的元素,移除是判断该元素是否放入队列
            myQueue.pop(nums[i-k]);
//            滑动窗口加入最后面的元素
            myQueue.push(nums[i]);
            res[num++]=myQueue.peek();
        }
        return res;
    }




class MyQueue{
    Deque<Integer> deque =new LinkedList<>();
    void pop(int val){
        if(!deque.isEmpty() && deque.peek()==val){
            deque.pop();
        }
    }
    void push(int val){
        while (!deque.isEmpty() && val>deque.getLast()){
            deque.removeLast();
        }
        deque.add(val);
    }
    int peek(){
        return deque.peek();
    }
}

347.前k个高频元素

大/小顶堆的应用, 在C++中就是优先级队列 

本题是 大数据中取前k值 的经典思路,了解想法之后,不算难。

题目链接/文章讲解/视频讲解:代码随想录

思路

 

 

 

// 优先级队列:对外接口只是从队头取元素,从队尾添加元素。
//    优先级队列内部元素是自动依照元素的权值排列
    public static int[] topKFrequent(int[] nums, int k) {
//        统计元素出现的频率,用map来进行统计
        Map<Integer, Integer> map = new HashMap<>();
        for (int num:nums){
            map.put(num,map.getOrDefault(num,0)+1);
        }
//        对频率排序,优先级队列

//        创建优先级队列,其中存储的元素是整形数组int[]。通过传入一个比较器作为参数,定义了优先队列的排序规则。
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
        for (Map.Entry<Integer,Integer> entry:map.entrySet()){
            if(pq.size()<k){
                pq.add(new int[]{entry.getKey(),entry.getValue()});
            }else {
//                进行索引操作,获取数组的第二个元素
                if (entry.getValue()>pq.peek()[1]){
                    pq.poll();
                    pq.add(new int[]{entry.getKey(),entry.getValue()});
                }
            }
        }
//        我们用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆积累的才是前k个最大元素
        int[] ans = new int[k];
        for(int i=k-1;i>=0;i--){//依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
总结

代码随想录

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值