前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的
我讲述题目会把讲解部分分为3个部分:
1、题目解析
2、算法原理思路讲解
3、代码实现
买卖股票的最佳时机含手续费
题目链接:买卖股票的最佳时机含手续费
题目
给定一个整数数组 prices
,其中 prices[i]
表示第 i
天的股票价格 ;整数 fee
代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2 输出:8 解释:能够达到的最大利润: 在此处买入 prices[0] = 1 在此处卖出 prices[3] = 8 在此处买入 prices[4] = 4 在此处卖出 prices[5] = 9 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3 输出:6
提示:
1 <= prices.length <= 5 * 104
1 <= prices[i] < 5 * 104
0 <= fee < 5 * 104
解法
算法原理讲解
我们这题使用动态规划,我们做这类题目可以分为以下五个步骤
- 状态显示
- 状态转移方程
- 初始化(防止填表时不越界)
- 填表顺序
- 返回值
- 状态显示
由于有「买⼊」「可交易」两个状态,因此我们可以选择⽤两个数组,其中:
- f[i] 表示:第 i 天结束后,处于「买⼊」状态,此时的最⼤利润;
- g[i] 表示:第 i 天结束后,处于「卖出」状态,此时的最⼤利润。
- 状态转移方程
我们选择在「卖出」的时候,⽀付这个⼿续费,那么在「买⼊」的时候,就不⽤再考虑⼿续费的问题。于 f[i] ,我们有两种情况能到达这个状态:
- 在 i - 1 天「持有」股票,第 i 天啥也不⼲。此时最⼤收益为 f[i - 1] ;
- 在 i - 1 天的时候「没有」股票,在第 i 天买⼊股票。此时最⼤收益为 g[i - 1] - prices[i]) ;
- 两种情况下应该取最⼤值,因此 f[i] = max(f[i - 1], g[i - 1] - prices[i]) 。
对于 g[i] ,我们也有两种情况能够到达这个状态:
- 在 i - 1 天「持有」股票,但是在第 i 天将股票卖出。此时最⼤收益为: f[i - 1] + prices[i] - fee) ,记得⼿续费;
- 在 i - 1 天「没有」股票,然后第 i 天啥也不⼲。此时最⼤收益为: g[i - 1] ;
- 两种情况下应该取最⼤值,因此 g[i] = max(g[i - 1], f[i - 1] + prices[i] - fee)
- 初始化(防止填表时不越界)
- 对于 f[0] ,此时处于「买⼊」状态,因此 f[0] = -prices[0] ;
- 对于 g[0] ,此时处于「没有股票」状态,啥也不⼲即可获得最⼤收益,因此 g[0] = 0 。
- 填表顺序
毫⽆疑问是「从左往右」,但是两个表需要⼀起填.
- 返回值
应该返回「卖出」状态下,最后⼀天的最⼤值收益: g[n - 1] 。
代码实现
class Solution {
public:
int maxProfit(vector<int>& prices, int fee)
{
int n = prices.size();
vector<int> f(n);
auto g = f;
// 初始化
f[0] = -prices[0];
// 填表
for (int i = 1; i < n; i++)
{
f[i] = max(f[i-1], g[i-1] - prices[i]);
g[i] = max(g[i-1], f[i-1] + prices[i] - fee);
}
return g[n-1];
}
};