LeetCode刷题--- 最后一块石头的重量 II

前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的  

我讲述题目会把讲解部分分为3个部分:
1、题目解析

2、算法原理思路讲解

3、代码实现


最后一块石头的重量 II

题目链接:最后一块石头的重量 II

题目

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 100

解法

算法原理与解析

我们这题使用动态规划,我们做这类题目可以分为以下五个步骤

  1. 状态显示
  2. 状态转移方程
  3. 初始化(防止填表时不越界)
  4. 填表顺序
  5. 返回值
先将问题「转化」成我们熟悉的题型。
  1. 任意两块石头在⼀起粉碎,重量相同的部分会被丢掉,重量有差异的部分会被留下来。那就相当于在原始的数据的前⾯,加上「加号」或者「减号」,是最终的结果最小即可。也就是说把原始的⽯头分成两部分,两部分的和越接近越好。
  2. 因为当所有元素的和固定时,分成的两部分越接近数组「总和的⼀半」,两者的差越小。
因此问题就变成了:在数组中选择⼀些数,让这些数的和尽量接近 sum / 2 ,如果把数看成物品,每个数的值看成体积和价值,问题就变成了「01 背包问题」。
  • 状态显示

dp[ i ] [ j ] 表示在前 i 个元素中选择,总和不超过 j,此时所有元素的「最大和」。

  • 状态转移方程
  • 不选 stones[i] :那么我们是否能够凑成总和为 j ,就要看在前 i - 1 个元素中选,能否凑成总和为 j 。根据状态表示,此时 dp[ i ][ j ] = dp[ i - 1 ][ j ]
  • 选择 stones[i] :这种情况下是有前提条件的,此时的 stones[i] 应该是小于等于 j 。因为如果这个元素都比要凑成的总和大,选择它就没有意义呀。那么我们是否能够凑成总和为 j ,就要看在前 i - 1 个元素中选,能否凑成总和为 j - stones[i] 。根据状态表示,此时 dp[ i] [ j ] = dp[i - 1][j - stones[ i ] ] + stones[ i ]
综上所述,我们要的是最大价值。因此,状态转移方程为:
dp[i][j] = dp[i - 1][j]
if(j >= stones[i]) dp[i][j] = dp[i][j] + dp[i - 1][j - stones[i]] + stones[i] 。
  • 初始化(防止填表时不越界)
由于需要用到上⼀行的数据,因此我们可以先把第⼀行初始化。
第⼀行表示「没有石子」。因此想凑成目标和 j ,最大和都是 0
  • 填表顺序
根据「状态转移方程」,我们需要「从上往下」填写每⼀行,每⼀⾏的顺序是「无所谓的」。
  • 返回值
  1. 根据「状态表示」,先找到最接近 sum / 2 的最⼤和 dp[n][sum / 2]
  2. 因为我们要的是两堆石子的差,因此返回 sum - 2 * dp[n][sum / 2]

代码实现 

int lastStoneWeightII(vector<int>& stones) 
{
	int n = stones.size();
	int sum = 0;			// stones数组内的数的总和
	for (auto e : stones) { sum += e; }
	int aim = sum / 2;		
	// dp[i][j]表示前i个元素中选择,总和不超过j,此时的元素最大和
	vector<vector<int> > dp(n + 1, vector<int>(aim + 1));	

	for (int i = 1; i <= n; i++)	// 填表,从上到下,从左到右
		for (int j = 0; j <= aim; j++)
		{
			dp[i][j] = dp[i - 1][j];
			if (j >= stones[i - 1])
				dp[i][j] = max(dp[i][j], dp[i - 1][j - stones[i - 1]] + stones[i - 1]);
		}
	return sum - 2 * dp[n][aim];
}

代码优化

class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) 
    {
        int n = stones.size();
        int sum = 0;			// stones数组内的数的总和
        for (auto e : stones) { sum += e; }
        int aim = sum / 2;
        // dp[j]表示前i个元素中选择,总和不超过j,此时的元素最大和
        vector<int> dp(aim + 1);

        for (int i = 1; i <= n; i++)	// 填表,从右到左
            for (int j = aim; j >= stones[i - 1]; j--)
            {
                    dp[j] = max(dp[j], dp[j - stones[i - 1]] + stones[i - 1]);
            }
        return sum - 2 * dp[aim];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-元清-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值