前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的
我讲述题目会把讲解部分分为3个部分:
1、题目解析
2、算法原理思路讲解
3、代码实现
最后一块石头的重量 II
题目链接:最后一块石头的重量 II
题目
有一堆石头,用整数数组 stones
表示。其中 stones[i]
表示第 i
块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x
和 y
,且 x <= y
。那么粉碎的可能结果如下:
- 如果
x == y
,那么两块石头都会被完全粉碎; - 如果
x != y
,那么重量为x
的石头将会完全粉碎,而重量为y
的石头新重量为y-x
。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0
。
示例 1:
输入:stones = [2,7,4,1,8,1] 输出:1 解释: 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1], 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1], 组合 2 和 1,得到 1,所以数组转化为 [1,1,1], 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
示例 2:
输入:stones = [31,26,33,21,40] 输出:5
提示:
1 <= stones.length <= 30
1 <= stones[i] <= 100
解法
算法原理与解析
我们这题使用动态规划,我们做这类题目可以分为以下五个步骤
- 状态显示
- 状态转移方程
- 初始化(防止填表时不越界)
- 填表顺序
- 返回值
先将问题「转化」成我们熟悉的题型。
- 任意两块石头在⼀起粉碎,重量相同的部分会被丢掉,重量有差异的部分会被留下来。那就相当于在原始的数据的前⾯,加上「加号」或者「减号」,是最终的结果最小即可。也就是说把原始的⽯头分成两部分,两部分的和越接近越好。
- 因为当所有元素的和固定时,分成的两部分越接近数组「总和的⼀半」,两者的差越小。
因此问题就变成了:在数组中选择⼀些数,让这些数的和尽量接近
sum / 2
,如果把数看成物品,每个数的值看成体积和价值,问题就变成了「01 背包问题」。
- 状态显示
dp[ i ] [ j ] 表示在前 i 个元素中选择,总和不超过 j,此时所有元素的「最大和」。
- 状态转移方程
- 不选 stones[i] :那么我们是否能够凑成总和为 j ,就要看在前 i - 1 个元素中选,能否凑成总和为 j 。根据状态表示,此时 dp[ i ][ j ] = dp[ i - 1 ][ j ] ;
- 选择 stones[i] :这种情况下是有前提条件的,此时的 stones[i] 应该是小于等于 j 。因为如果这个元素都比要凑成的总和大,选择它就没有意义呀。那么我们是否能够凑成总和为 j ,就要看在前 i - 1 个元素中选,能否凑成总和为 j - stones[i] 。根据状态表示,此时 dp[ i] [ j ] = dp[i - 1][j - stones[ i ] ] + stones[ i ] 。
综上所述,我们要的是最大价值。因此,状态转移方程为:dp[i][j] = dp[i - 1][j]if(j >= stones[i]) dp[i][j] = dp[i][j] + dp[i - 1][j - stones[i]] + stones[i] 。
- 初始化(防止填表时不越界)
由于需要用到上⼀行的数据,因此我们可以先把第⼀行初始化。第⼀行表示「没有石子」。因此想凑成目标和 j ,最大和都是 0
- 填表顺序
根据「状态转移方程」,我们需要「从上往下」填写每⼀行,每⼀⾏的顺序是「无所谓的」。
- 返回值
- 根据「状态表示」,先找到最接近 sum / 2 的最⼤和 dp[n][sum / 2] ;
- 因为我们要的是两堆石子的差,因此返回 sum - 2 * dp[n][sum / 2] 。
代码实现
int lastStoneWeightII(vector<int>& stones)
{
int n = stones.size();
int sum = 0; // stones数组内的数的总和
for (auto e : stones) { sum += e; }
int aim = sum / 2;
// dp[i][j]表示前i个元素中选择,总和不超过j,此时的元素最大和
vector<vector<int> > dp(n + 1, vector<int>(aim + 1));
for (int i = 1; i <= n; i++) // 填表,从上到下,从左到右
for (int j = 0; j <= aim; j++)
{
dp[i][j] = dp[i - 1][j];
if (j >= stones[i - 1])
dp[i][j] = max(dp[i][j], dp[i - 1][j - stones[i - 1]] + stones[i - 1]);
}
return sum - 2 * dp[n][aim];
}
代码优化
class Solution {
public:
int lastStoneWeightII(vector<int>& stones)
{
int n = stones.size();
int sum = 0; // stones数组内的数的总和
for (auto e : stones) { sum += e; }
int aim = sum / 2;
// dp[j]表示前i个元素中选择,总和不超过j,此时的元素最大和
vector<int> dp(aim + 1);
for (int i = 1; i <= n; i++) // 填表,从右到左
for (int j = aim; j >= stones[i - 1]; j--)
{
dp[j] = max(dp[j], dp[j - stones[i - 1]] + stones[i - 1]);
}
return sum - 2 * dp[aim];
}
};