国内电商行业(其二):数据分析实战篇

此前篇章:国内电商行业(其一):业务知识与业务指标


一、回购率下降案例分析

问题描述:2019年“双11”结束后,某服装店KPI(关键绩效指标)未达成。经过初步分析,11.11日首次交易的新用户数量可观,KPI缺口可能与已购用户销售表现不佳有关。现在需要找到问题的原因,并给出改进建议。

(一)明确问题

“双11”是短期大促活动,要使用大促回购率指标。“KPI缺口可能与已购用户销售表现不佳有关”,说明对象是在“双11”前已在店铺中购买过的用户。“已购用户销售表现不佳”是指2019年“双11”与历年“双11”对比,发现2019年“双11”用户回购率下降,要找到下降原因。

(二)分析原因

分析思路:

  1. 多维度拆解分析付费拆解用户;
  2. 对比分析方法对比不同层次用户的回购率变化,缩小目标范围后继续拆解对比;
  3. 使用假设检验分析方法确认原因。

由于问题针对的对象是近两年的购买人群,我们选择两年内有成交的用户为基数来计算2017、2018、2019年的回购率。回购率 = 回购人数 / 基数。

计算得到历年“双11”回购率变化图:

根据数据图,我们发现回购人数和基数逐年增加,单看这两个指标,我们看不出什么问题。再看回购率,发现虽然回购人数和基数都在增长,而回购率却在下滑,这是因为回购人数的增长慢于基数的增长。也就是说,新增的基数人群中,有部分人回购率不佳,拖累整体,接下来要重点分析找出这部分人。

回购率为什么要重视?原因有两点:

  • 一是用户基数非常大,如果算上两年以前的用户就算百万级别的,即便减少0.1%的回购,意味着失去1000个用户,如果店铺客单价为200元,那就是损失了20万!
  • 二是“双11”的大促活动,用户回购基本达到顶峰,如果“双11”的回购率也下降,意味着平时的回购率下降会更明显。

接下来开始使用多维度拆解分析方法来拆解用户,通过对比不同类型的用户回购率,进行探索

选择第一个拆解的维度:R值,它是RFM模型(之前文章有讲:RFM分析方法)中的“最后一次购买时间间隔”,R值越小,用户活跃率越高,用户回购率也越高。先按年组略把R值拆分为两组:R<=365 和 365<R<=370。进行分组计算回购情况。

“R<=365”组,2018年和2019年的回购率持平,“365<R<=370”组,回购率不降反增,但是总体来看却是回购率同比下降了-4.46%。因此,R值并不能定位回购率下降的原因。其中,同比 = (这次的xxx - 上次的xxx)/ 上次的xxx。

暂时放下R值,尝试其他维度。下一个维度,RFM模型中的F值,即“购买频次”,也就是基数用户在“双11”之前的两年内的购买次数。先粗略拆解为F=1与F>1。F值越大,用户越活跃,回购频率越高。

 可以看到,F值的两组在2018和2019的回购率有很明显的区别,虽然都是下降的,但是“F=1”组在2019的回购率(对比2018年)是下降了-9.27%,下降幅度比“F>1”组大得多,相比于总体下降的-4.46%,-9.27%确实下降很多了。即:仅购买一次的基数用户回购率下滑较大,造成2019年整体回购率降低。因此可以定位主要问题出现在“F=1”组的用户。

为什么不用RFM中的M值?原因是累计金额M = 客单价 * 购买次数,而要拆解的用户购买次数F=1,且单笔客单的差距不大,要拆分的用户累计金额差距不大(即基本都是同一金额),达不到分组效果。

下面不再粗略拆解,需要更精细的拆解,找到核心原因。仅对“F=1”的用户,对R值进行更细致的拆分:

发现问题主要出现在“R<90<=180”这一组,即“最近一次购买是在双11前的3-6月”的用户,这时候段时间还有2个主要活动:“618”大促和“7月秋季上新”。

于是可以提出假设:两次活动引进的新用户质量产生了问题。

可以对比用户一年复购率、加入会员的比例、互动率、短信相应率等指标,如下图所示。最终得出结论,2019年“618”大促带来的新用户未留存下来,这些用户来源主要是平台的推广业,例如“9.9元秒杀”等曝光量大的广告吸引来许多低价尝鲜的用户。

(三)提出建议

“回购率下降”的原因分析基本结束了。根据分析的原因,问题出在店铺在今年平台大促引入购买一次的新用户后续复购转化不足,给出以下建议:

为该店铺设计一次专门针对新用户的店铺首页,并且仅对新用户展示,该页面强化“即使激励+复购挑战+长期复购”的权益”。具体包含:

  • 可立即领取的首购奖励:100%中奖的幸运转盘,积分,优惠券等。
  • 45天内产生复购可以领取赠品
  • 推出积分卡、兑换卡、多次购买优惠返利的权益等。

建议的话要注意落地可执行性,可以从外部(电商平台)和内部(卖家店铺)自身两个角度去思考。外部包括分析已有电商平台资源、未来可争取的电商平台资源、竞品有但我们没有的资源。内部注意从推广策、用户运营策略商品策略、活动策略来考虑。如果有不熟悉的知识板块,注意多和相关部门的同事沟通学习。

二、如何做好活动复盘

某电商平台是一个专门为卖家提供折扣活动的平台,卖家在该平台做折扣活动,用来吸引用户购买,比如“唯品会”等。卖家每个月都会在电商平台上有打折活动,每次活动后需要复盘,用来评估活动效果,并作出改进。

促销活动流程:

 下面以“双11”活动为例,将整个活动复盘分为以下部分:

  • 总体运营
  • 价格区间
  • 折扣区间

总体运营部分可以直观展示本次活动的销售数据。价格区间和折扣区间部分不仅可以直接看到各个区间的销售情况,还可以选择出哪些商品活动效果好,以便优化下次活动。

(1)总体运营

这部分,主要关注销售额,售卖比,UV、转化率等指标,其他指标可以作为辅助指标。

  • 销售额可以用来和预期目标做对比
  • 售卖比可以对库存进行优化
  • UV和转化率可以选出销售较好的商品

一般情况下,进行活动效果评估离不开环比、同比(不懂可以看看前面文章:对比分析方法)。本次案例使用对比分析方法,将去年“双11”和今年“双11”的数据用同比来比较。(部分数据无法得到,这部分数据没有做同比)

(2)价格区间

把数据按价格维度来拆解,可以对本次活动的价格结构有一个整体了解。价格区间要根据实际业务情况进行划分。 价格结构表如下:

为了给下次活动提供决策依据、优化参与活动的商品结构,需要将本次活动效果不错的商品继续用于下次活动将效果不好的商品进行清仓处理。

那么,如何判断商品效果的好坏?

这需要使用对比分析方法继续深入分析不同区间的数据。以500~700元的价格区间为例,需要获取此区间的销售数据:款号、销售额、销量等信息。然后计算每款商品的售卖比、转化率等指标。

将转化率>=0.8%的部分商品暂时保留用于参加下次活动;低于0.8%的部分商品,按照售卖比是否大于30%来选择是否保留和清仓。即,A、B、C商品(>=0.8%)先保留,然后D、E(虽然低于0.8%,但售卖比>30%)也保留,其余清仓处理。

(3)折扣区间

类似上面的价格区间,按照折扣区间(打几折)维度来拆解,计算售卖比和转化率。

销售数据: 

以0.25~0.3折为例的销售数据:

类似的,商品间进行对比分析售卖比、转化率,选择需要保留和清仓处理的商品。

复盘虽然简单,但是却有很大作用,它可以不断地优化商品结构,了解活动状况。在做更深入的数据分析之前,一个简单的复盘是必不可少的。

# 后续还会继续更新。与本篇相关的文章:数据分析思维(一):业务指标

# 本文章仅供学习参考使用,参考教材《数据分析思维——分析方法和业务知识》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值