在本次技术实践中,我主要编写了一个爬虫程序,用于爬取国家法律法规数据库的相关数据。之后对这些数据进行处理并上传到数据库。需要强调的是,以下所有内容仅用于学习交流。
一、项目概述
本次爬虫项目涉及多个功能模块,分别处理数据库连接、信息状态映射、网络重试、数据库插入、数据总页数获取、单条数据获取、不同法律类型爬取以及宪法内容爬取等任务。下面将详细介绍各个模块的实现。
二、代码实现与模块解析
1. 数据库配置与连接
import requests
import time
import math
import pymysql
import io
import json
from datetime import datetime
from urllib.parse import urljoin
import random
# 数据库配置
DB_CONFIG = {
#自己的数据库配置
}
# 请求配置
headers = {
# 自己的请求头配置
}
base_url = 'https://flk.npc.gov.cn/api/'
types = ['flfg', 'xzfg', 'jcfg', 'sfjs', 'dfxfg']
MAX_RETRIES = 5 # 最大重试次数
BASE_DELAY = 3 # 基础延迟时间(秒)
TIMEOUT = 30 # 请求超时时间
def get_db_connection():
"""获取数据库连接"""
return pymysql.connect(**DB_CONFIG)
此部分代码主要完成了数据库和请求的基础配置,同时定义了获取数据库连接的函数,为后续的数据存储提供了基础。
2. 带重试机制的请求函数
def safe_request(url, method='get', data=None, params=None, retry=0):
"""
带重试机制的请求函数
解决JSON解析错误问题
"""
try:
if method.lower() == 'get':
response = requests.get(
url,
headers=headers,
params=params,
timeout=TIMEOUT
)
else:
headers_post = headers.copy()
headers_post['Content-Type'] = 'application/x-www-form-urlencoded'
response = requests.post(
url,
headers=headers_post,
data=data,
timeout=TIMEOUT
)
# 检查响应内容是否为JSON
if 'application/json' not in response.headers.get('Content-Type', '').lower():
raise ValueError("响应不是JSON格式")
response.raise_for_status()
return response.json() # 直接返回解析后的JSON
except (requests.exceptions.RequestException, ValueError, json.JSONDecodeError) as e:
if retry < MAX_RETRIES:
wait_time = BASE_DELAY * (2 ** retry) + random.uniform(0, 1)
print(f"请求失败,{wait_time:.1f}秒后重试... (错误: {str(e)})")
time.sleep(wait_time)
return safe_request(url, method, data, params, retry + 1)
raise Exception(f"请求失败,已达最大重试次数: {str(e)}")
为应对网络不稳定的情况,该函数实现了请求重试机制。若请求失败或响应非 JSON 格式,会进行多次重试,直至达到最大重试次数。
3. 信息状态映射
def get_status_mapping(code):
"""根据状态码返回状态文本"""
status_map = {
"1": "有效",
"5": "已修改",
"9": "已废止",
"3": "尚未生效"
}
return status_map.get(code, "未知状态")
这个函数用于将法律条目的状态码映射为具体的状态文本,方便后续的数据处理和展示。
4. 带重试机制的文件下载
def download_file_with_retry(url, max_size=50*1024*1024):
"""
带重试机制的文件下载
返回文件内容和文件类型
"""
for attempt in range(MAX_RETRIES):
try:
response = requests.get(
url,
headers=headers,
stream=True,
timeout=TIMEOUT
)
response.raise_for_status()
# 检查文件大小
file_size = int(response.headers.get('Content-Length', 0))
if file_size > max_size:
raise ValueError(f"文件过大({file_size}字节),超过{max_size}字节限制")
# 分块读取内容
file_content = b''
for chunk in response.iter_content(chunk_size=8192):
file_content += chunk
if len(file_content) > max_size:
raise ValueError(f"文件超过大小限制({max_size}字节)")
# 确定文件类型
content_type = response.headers.get('Content-Type', '').lower()
if 'pdf' in content_type:
file_type = 'pdf'
elif 'word' in content_type or 'msword' in content_type:
file_type = 'word'
else:
# 根据URL后缀判断
ext = url.split('.')[-1].lower()
file_type = ext if ext in ['pdf', 'docx', 'doc'] else 'unknown'
return file_content, file_type
except requests.exceptions.RequestException as e:
if attempt == MAX_RETRIES - 1:
raise
time.sleep(BASE_DELAY * (attempt + 1))
raise Exception("文件下载失败")
该函数实现了文件下载的重试机制,同时会对文件大小进行检查,避免下载过大的文件。
5. 数据保存到数据库
def save_to_database(data):
conn = None
try:
conn = get_db_connection()
with conn.cursor() as cursor:
# 处理 publish_date
publish_date = data.get('publish')
if publish_date == "": # 如果是空字符串,设为 NULL
publish_date = None
sql = """
INSERT INTO law (title, enacting_authority, legal_nature,
validity_status, publish_date, content,
file_content, file_type)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s)
"""
cursor.execute(sql, (
data.get('title', '无标题'),
data.get('office', '未知机关'),
data.get('type', '未知类型'),
data.get('status', '未知状态'),
publish_date, # 可能是 NULL 或有效日期
data.get('content', ''),
data.get('file_content'),
data.get('file_type', 'unknown')
))
conn.commit()
print(f"成功保存: {data.get('title')}")
return True
except pymysql.Error as e:
print(f"数据库错误: {e}")
if conn:
conn.rollback()
return False
finally:
if conn:
conn.close()
在将数据插入数据库时,对公布时间进行了格式验证。若公布时间为空字符串,则将其设为 NULL
,避免了之前遇到的 mysql1292
错误。
6. 获取数据总页数
def get_total_pages(t, size=10):
"""获取总页数(增强错误处理)"""
params = {
'type': t,
'searchType': 'title;vague',
'sortTr': 'f_bbrq_s;desc',
'gbrqStart': '',
'gbrqEnd': '',
'sxrqStart': '',
'sxrqEnd': '',
'sort': 'true',
'page': '1',
'size': str(size),
'_': str(int(time.time() * 1000))
}
try:
result = safe_request(base_url, params=params)
total_sizes = result['result']['totalSizes']
pages = math.ceil(total_sizes / size)
print(f"{t}类型总页数: {pages}")
return pages
except Exception as e:
print(f"获取{t}类型总页数失败: {e}")
return 0
该函数用于获取指定类型数据的总页数,同时对可能出现的异常进行了处理。
7. 处理单个法律条目
def process_law_item(item):
"""处理单个法律条目"""
try:
# 获取详情
detail_url = urljoin(base_url, 'detail')
detail_data = {'id': item['id']}
try:
detail_json = safe_request(detail_url, method='post', data=detail_data)
except Exception as e:
print(f"获取详情失败: {str(e)}")
return False
if not detail_json.get('result', {}).get('body'):
print(f"{item.get('title')} 无详情内容")
return False
body = detail_json['result']['body'][0]
file_path = body.get('path', '')
if not file_path:
print(f"{item.get('title')} 无文件路径")
return False
file_url = urljoin('https://wb.flk.npc.gov.cn', file_path)
# 下载文件
try:
file_content, file_type = download_file_with_retry(file_url)
except Exception as e:
print(f"下载文件失败: {str(e)}")
return False
# 准备数据
law_data = {
'title': item.get('title', '无标题'),
'office': item.get('office', '未知机关'),
'publish': item.get('publish'),
'type': item.get('type', '未知类型'),
'status': get_status_mapping(item.get('status', '')),
'content': f"文件类型: {file_type}",
'file_content': file_content,
'file_type': file_type
}
# 保存到数据库
if not save_to_database(law_data):
return False
# 随机延迟防止被封
time.sleep(random.uniform(1, 3))
return True
except Exception as e:
print(f"处理条目失败: {str(e)}")
return False
此函数用于处理单个法律条目的详情获取、文件下载和数据保存等操作,同时进行了一系列的错误处理。
8. 爬取指定类型数据
def crawl_type(t, size=10):
"""爬取指定类型数据"""
total_pages = get_total_pages(t, size)
if total_pages == 0:
print(f"{t}类型获取页数失败,跳过")
return
print(f"开始爬取{t}类型,共{total_pages}页...")
for page in range(1, total_pages + 1):
print(f"正在处理第{page}/{total_pages}页...")
params = {
'type': t,
'searchType': 'title;vague',
'sortTr': 'f_bbrq_s;desc',
'gbrqStart': '',
'gbrqEnd': '',
'sxrqStart': '',
'sxrqEnd': '',
'sort': 'true',
'page': str(page),
'size': str(size),
'_': str(int(time.time() * 1000))
}
try:
# 获取列表数据
result = safe_request(base_url, params=params)
data = result['result']['data']
# 处理每个条目
for item in data:
if not process_law_item(item):
continue
except Exception as e:
print(f"第{page}页处理失败: {str(e)}")
continue
该函数用于爬取指定类型的法律数据,会遍历所有页面并处理每个条目。
9. 爬取宪法数据
def crawl_xf():
"""爬取宪法数据"""
print("开始爬取宪法数据...")
url = urljoin(base_url, 'xf')
try:
result = safe_request(url)
data = result['result']['data']
for item in data[:7]: # 只取前7条
# 获取详情
detail_url = urljoin(base_url, 'detail')
detail_data = {'id': item['id']}
try:
detail_json = safe_request(detail_url, method='post', data=detail_data)
except Exception as e:
print(f"获取宪法详情失败: {str(e)}")
continue
if not detail_json.get('result', {}).get('body'):
print(f"{item.get('title')} 无详情内容")
continue
body = detail_json['result']['body'][0]
file_path = body.get('path', '')
if not file_path:
print(f"{item.get('title')} 无文件路径")
continue
file_url = urljoin('https://wb.flk.npc.gov.cn', file_path)
# 下载文件
try:
file_content, file_type = download_file_with_retry(file_url)
except Exception as e:
print(f"下载宪法文件失败: {str(e)}")
continue
# 准备数据
law_data = {
'title': item.get('title', '无标题'),
'office': '全国人民代表大会',
'publish': item.get('publish'),
'type': item.get('type', '宪法'),
'status': '有效',
'content': f"宪法文件类型: {file_type}",
'file_content': file_content,
'file_type': file_type
}
save_to_database(law_data)
time.sleep(random.uniform(1, 3))
except Exception as e:
print(f"获取宪法数据失败: {str(e)}")
由于宪法数据内容较少且与其他类型有所不同,因此单独编写了一个函数进行爬取。
10. 主程序
if __name__ == "__main__":
# 检查数据库表结构
conn = None
try:
conn = get_db_connection()
with conn.cursor() as cursor:
# 确保表存在且有file_content和file_type字段
cursor.execute("""
CREATE TABLE IF NOT EXISTS law (
id BIGINT PRIMARY KEY AUTO_INCREMENT,
title VARCHAR(255) NOT NULL,
enacting_authority VARCHAR(100) NOT NULL,
legal_nature VARCHAR(50) NOT NULL,
validity_status VARCHAR(20) NULL,
publish_date DATE NULL,
content TEXT,
file_content LONGBLOB,
file_type VARCHAR(10),
create_time DATETIME DEFAULT CURRENT_TIMESTAMP,
update_time DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
""")
conn.commit()
except Exception as e:
print(f"数据库初始化失败: {e}")
exit()
finally:
if conn:
conn.close()
# 设置每页数量
page_size = 10
# 爬取各类数据
for t in types:
crawl_type(t, page_size)
# 爬取宪法数据
crawl_xf()
print("所有数据爬取完成!")
主程序部分会先检查数据库表结构,然后依次爬取各类法律数据和宪法数据。
三、项目经验总结
在项目开发过程中,细致和耐心至关重要。网页数据往往会出现各种意外情况,不能想当然地进行处理,需要对可能出现的问题进行充分的考虑和应对。
此外,在爬取过程中也遇到了一些问题。例如,地方性法规的内容量巨大,50G 的数据库远远不够存储。后续需要思考如何解决存储问题,以及如何突破中国裁判文书网的反爬机制进行数据爬取。
通过这次项目实践,我不仅提升了爬虫开发的技能,也更加深刻地认识到了数据处理和错误处理的重要性。未来,我将继续优化这个项目,解决遇到的问题,同时探索更多有趣的技术应用。