python数据分析|二 IPython和JupyterNotebooks

一 python 解释器

Python解释器同一时间只能运行一个程序的一条语句。

如何适用:

win + r 

cmd

 要退出Python解释器返回终端,可以输入 exit() 或 Ctrl-D。

假设创建了一个 hello_world.py 文件,它的内容是:

可以用下面的命令运行它( hello_world.py 文件必须位于终端的工作目录):

 

从事数据分析和科学计算的人却会使用IPython,一个强化的Python解释器,或Jupyter notebooks,一个网页代码笔记本。
 %run 命令,IPython会同样执行指定文件中的代码,结束之后,还可以与结果交互:

 


二 IPython Shell

1.运行 IPython Shell

用 ipython 在命令行打开IPython Shell,就像打开普通的Python解释器:

输入代码并按Return(或Enter),运行任意Python语句。

当只输入一个变量,会显示代表的对象: 

2.运行Jupyter Notebook

notebook是一个代码、文本(有标记或无标记)、数据可视化或其它输出的交互式文档。Jupyter Notebook需要与内核互动,内核是Jupyter与其它编程语言的交互编程协议。

什么意思:Jupyter Notebook需要与内核互动,内核是Jupyter与其它编程语言的交互编程协议。

Jupyter Notebook:是一个开源的、基于Web的应用程序,允许你创建和共享包含代码、方程、可视化和文本的文档。它被广泛用于数据科学、机器学习、科学计算和教育等领域。

内核:内核是执行你编写的代码的程序。每个内核都支持一种或多种编程语言,如 Python、R、Julia 等。当你运行一个代码单元时,Jupyter Notebook 会将该代码发送到相应的内核进行执行,然后内核将执行结果返回给 Notebook。

交互编程协议:内核与 Jupyter Notebook 之间的通信遵循一种特定的协议。这个协议定义了如何发送代码到内核、如何从内核接收结果、如何处理错误和输出等。所以 Jupyter Notebook 能够与多种不同的内核和编程语言进行交互。

Python的Jupyter内核是使用IPython。要启动Jupyter,在命令行中输入 jupyter notebook :

在多数平台上,Jupyter会自动打开默认的浏览器(除非指定了 --no-browser )。或者可以在启动notebook之后,手动打开网页 http://localhost:8888/ 。

新建一个notebook,点击按钮New,选择“Python3”或“conda[默认项]”。 

3.Tab补全

从外观上,IPython shell和标准的Python解释器只是看起来不同。IPython shell的进步之一是具备
其它IDE和交互计算分析环境都有的tab补全功能。

使用方法:在shell中输入表达式,按下Tab。

默认情况下,IPython会隐藏下划线开头的方法和属性,比如魔术方法和内部的“私有”方法和属性,以避免混乱的显示,这些也可以tab补全,但是必须先输入一个下划线才能看到它们。如果你喜欢总是在tab补全中看到这样的方法,你可以IPython配置中进行设置。

4.自省

1.在变量前后使用问号 ?,可以显示对象的信息:

2.用在函数:

3. 像Unix或Windows命令行一样搜索IPython的命名空间,字符与通配符结合可以匹配所有的名字

5. %run命令

可以用 %run 命令运行所有的Python程序。

假设有一个文件 ipython_script_test.py:

这段脚本运行在空的命名空间(没有import和其它定义的变量),因此结果和普通的运行方式 python script.py 相同。文件中所有定义的变量(import、函数和全局变量,除非抛出异常),都可以在IPython shell中随后访问,

6.中断运行的代码

7.魔术命令

IPython 中特殊的命令(Python中没有)被称作“魔术”命令。

魔术命令是在指令前添加百分号%前缀。例如,可以用 %timeit 测量任何Python语句,例如矩阵乘法,的执行时间:

 一些魔术函数与Python函数很像,它的结果可以赋值给一个变量:

常用的 IPython 指令:

jupyter note里面可以用ipython的魔术命令吗: 

Jupyter Notebook里面可以使用IPython的魔术命令。Jupyter Notebook是一个交互式计算环境,它允许用户使用IPython作为其内核来运行Python代码。IPython是一个增强版的Python解释器,提供了许多有用的功能,其中就包括所谓的“魔术命令”(magic commands),这些命令以%或%%开头,用于执行特定的操作。

魔术命令在Jupyter Notebook中使用时,需要在单元格的代码开头使用,并且一些魔术命令可能需要在Jupyter Notebook的配置中启用或安装相应的库。

%matplotlib 魔术函数配置了IPython shell和Jupyter notebook中的matplotlib。这点很重要,其它创建的图不会出现(notebook)或获取session的控制,直到结束(shell)。

什么意思:%matplotlib 魔术函数配置了IPython shell和Jupyter notebook中的matplotlib。这点很重要,其它创建的图不会出现(notebook)或获取session的控制,直到结束(shell)。

%matplotlib 魔术函数:

这是IPython提供的一个特殊命令,用于配置matplotlib的行为。

在Jupyter notebook中,使用%matplotlib inline可以使得matplotlib绘制的图形直接嵌入到notebook的页面中,而不是在新窗口中打开。

在Jupyter notebook中的影响:如果不使用%matplotlib inline,那么在notebook中创建的图形可能不会直接显示,而是会尝试在新窗口中打开,这通常不是我们想要的效果。

使用%matplotlib inline后,图形会嵌入到notebook的页面中,方便我们查看和与代码进行交互。

在IPython shell中的影响:在IPython shell中,如果不进行配置,matplotlib绘制的图形可能会显示在一个单独的窗口中,并且会话的控制权可能不会在图形显示后立即返回给shell。

通过配置%matplotlib(例如使用%matplotlib qt来选择Qt5后端),我们可以控制图形的显示方式和会话的行为。

在IPython shell中,运行 %matplotlib 可以进行设置,可以创建多个绘图窗口,而不会干扰控制台
session:

在JUpyter中,命令有所不同:


三 python 语法规则

仅作为补充,详细在在python学习笔记中。

1.万物皆对象

每个数字、字符串、数据结构、函数、类、模块等等,都被认为是Python对象。每个对象都有类型(例如,字符串或函数)和内部数据。

什么意思:每个数字、字符串、数据结构、函数、类、模块等等,都被认为是Python对象。每个对象都有类型(例如,字符串或函数)和内部数据。

在Python中,无论是基本的数据类型(如数字、字符串)还是更复杂的数据结构(如列表、字典)、函数、类、模块等,都被视为“对象”。每个对象都有其特定的“类型”以及与之关联的“内部数据”。

举例:

(数字对象):

类型:int float

内部数据:数值本身

例子:num = 10,这里num是一个整数对象,其类型为int,内部数据为10

(字符串对象):

类型:str 

内部数据:字符序列

例子:text = "Hello, World!",这里text是一个字符串对象,其类型为str,内部数据为字符序列"Hello, World!"

(列表对象):

类型:list

内部数据:元素的有序集合

例子:my_list = [1, 2, 3, "a", "b"],这里my_list是一个列表对象,其类型为list,内部数据为包含整数和字符串的有序集合。

(函数对象):

类型:通常是function(对于普通函数)或method(对于类的方法)

内部数据:函数的实现代码

例子:def add(a, b): return a + b,这里add是一个函数对象,其类型为function,内部数据是执行加法的代码。

(类对象):

类型:type(在Python中,类本身也是对象,并且它们的类型是type

内部数据:类属性、方法定义等

例子:class Person: name = "" age = 0,这里Person是一个类对象,其类型为type,内部数据包括类属性nameage,以及可能定义的方法。

2.变量和参数传递

当在Python中创建变量,你就在等号右边创建了一个对这个变量的引用

举例:

赋值也被称作绑定,我们是把一个名字绑定给一个对象。变量名有时可能被称为绑定变量。

Python中的对象引用不包含附属的类型。

什么意思:Python中的对象引用不包含附属的类型。

实际上是在讨论对象引用(即变量)和对象本身之间的区别,以及类型信息是如何与对象相关联的,而不是与变量(引用)直接相关联的。

对象引用(变量):在Python中,变量是存储对象引用的容器。变量本身不存储数据,而是存储对存储在内存中的对象的引用。

变量本身并不存储值,而是存储了对对象的引用(即对象的内存地址)。变量可以被重新赋值,以指向不同的对象。

比喻:

仓库里存放着各种各样的物品(比如书籍、玩具、电子产品等),这些物品就相当于Python中的“对象”。每个物品都有一个唯一的位置(比如货架上的某个格子),这个位置信息就相当于Python中变量所存储的“对象引用”。现在,仓库管理员给了你一个便签,上面写着玩具的位置信息(“A区3排5格”),这个便签就相当于Python中的一个“变量”。你拿着这个便签,就可以去仓库里找到对应的物品。但是,便签本身并不包含物品的数据(比如书籍的内容、玩具的形状等),它只是告诉你物品在哪里。

当使用变量时,Python会根据变量上存储的地址信息(对象引用),去内存中找到对应的对象,并对其进行操作。因此,变量本身并不存储数据,它只是存储了一个指向数据的引用(地址)。

对象:

对象是Python中数据的基本单元,可以是数字、字符串、列表、字典、函数、类等。每个对象都有一些属性(即数据)和一些方法(即函数,用于操作这些数据)。

对象是内存中存储数据的实体,具有明确的类型。对象包含了数据和操作数据的函数(方法)

比喻:

对象(比如一个整数42或一个字符串"Hello")就像是仓库里的物品,它包含了实际的数据。

变量和对象的区别:

你手上有一个便签(变量),上面写着某个房间的地址(对象的内存地址)。现在你想去另一个房间,于是你撕下这个便签,写上新房间的地址,然后贴在手上。

类型信息:当你创建一个对象时,Python会自动为其分配一个类型,这个类型定义了对象的结构和行为。

3.鸭子类型

可能不关心对象的类型,只关心对象是否有某些方法或用途。这通常被称为“鸭子类型”,来自“走起来像鸭子、叫起来像鸭子,那么它就是鸭子”的说法。

什么意思:鸭子类型

在Python中,这种类型机制不关注对象的类型,而是关注对象的行为。只要对象实现了特定的方法或属性,就可以认为它是鸭子类型,而不需要显式地继承或实现某个类或接口。

举例:

class Duck:  
    def quack(self):  
        print("Quack!")  
  
    def fly(self):  
        print("I'm flying!")  
  
class Person:  
    def quack(self):  
        print("I'm quacking like a duck!")  
  
    def fly(self):  
        print("I'm flapping my arms like a duck!")  
  
def make_it_quack_and_fly(obj):  
    obj.quack()  
    obj.fly()  
  
duck = Duck()  
person = Person()  
  
make_it_quack_and_fly(duck)  # Output: Quack! I'm flying!  
make_it_quack_and_fly(person)  # Output: I'm quacking like a duck! I'm flapping my arms like a duck!

Duck类和Person类都没有相互关联,也没有共同的父类或接口。然而,它们都具有quack()fly()方法,并且这些方法的行为相似。因此,我们可以通过鸭子类型的判断方式,将duckperson对象都传递给make_it_quack_and_fly()函数,并成功执行相应的操作。

比喻:

在日常生活中,我们看到一个物体能够在水中漂浮、有羽毛、并且会发出“嘎嘎”的叫声,我们就会认为它是鸭子,而不会去深究它到底是哪种鸭子,或者它是不是由其他动物伪装而成的。

好处:

(灵活性)不需要关心对象的实际类型,只需要关心它是否具有你需要的行为(方法)。

def process_duck_like(duck_like):  
    duck_like.quack()  
    duck_like.fly()  

class Duck:  
    def quack(self):  
        print("Quack!")  

    def fly(self):  
        print("Flying!")  

class RobotDuck:  
    def quack(self):  
        print("Electronic Quack!")  

    def fly(self):  
        print("Using propellers to fly!")  

duck = Duck()  
robot_duck = RobotDuck()  

process_duck_like(duck)       # Outputs: Quack! Flying!  
process_duck_like(robot_duck) # Outputs: Electronic Quack! Using propellers to fly!

在这个例子中,process_duck_like 函数可以处理任何具有 quack 和 fly 方法的对象,无论它们是 Duck 还是 RobotDuck

使用场景:

1.插件系统

在插件系统中,不同的插件可能需要实现相同的功能接口,但它们的实现方式和底层技术可能完全不同。使用鸭子类型,可以避免对插件的严格类型限制,只要插件对象能够表现出所需的行为即可。

# 定义一个插件接口(非强制性的,仅用于说明)  
class PluginInterface:  
    def execute(self):  
        pass  
  
# 插件A的实现  
class PluginA:  
    def execute(self):  
        print("Plugin A is executing...")  
  
# 插件B的实现  
class PluginB:  
    def execute(self):  
        print("Plugin B is executing...")  
  
# 插件管理器,使用鸭子类型来加载和执行插件  
class PluginManager:  
    def load_plugin(self, plugin):  
        if hasattr(plugin, 'execute'):  
            plugin.execute()  
        else:  
            print("Invalid plugin: No execute method found.")  
  
# 使用插件管理器加载和执行插件  
pm = PluginManager()  
pm.load_plugin(PluginA())  # 输出: Plugin A is executing...  
pm.load_plugin(PluginB())  # 输出: Plugin B is executing...

2.单元测试中的模拟对象

在编写单元测试时,有时需要模拟外部依赖(如数据库、网络服务等)。使用鸭子类型,可以创建仅实现被测试代码所期望方法的模拟对象,从而避免对外部依赖的依赖。

# 被测试的代码  
def send_email(email_service):  
    email_service.send("Test Email Subject", "Test Email Body")  
  
# 模拟的EmailService对象  
class MockEmailService:  
    def send(self, subject, body):  
        print(f"Email sent with subject: {subject}, body: {body}")  
  
# 单元测试  
def test_send_email():  
    mock_service = MockEmailService()  
    send_email(mock_service)  # 输出: Email sent with subject: Test Email Subject, body: Test Email Body

3.动态数据结构处理

在处理动态数据结构(如JSON对象、字典等)时,对象的类型和结构可能在运行时发生变化。使用鸭子类型,可以根据对象当前的状态和行为来处理它,而不是根据它的静态类型。

# 动态数据结构(JSON对象)  
data = {  
    "type": "user",  
    "name": "John Doe",  
    "age": 30  
}  
  
# 处理动态数据结构的函数  
def process_data(data):  
    if 'name' in data and 'age' in data:  
        print(f"Name: {data['name']}, Age: {data['age']}")  
    else:  
        print("Invalid data structure.")  
  
# 使用函数处理数据  
process_data(data)  # 输出: Name: John Doe, Age: 30

4.多态性实现

虽然鸭子类型不是传统面向对象编程中的多态性(通过继承实现的),但它提供了一种类似的多态性机制。只要对象具有相同的行为(方法),就可以将它们视为可互换的类型。

# 定义一个基类(非强制性的,仅用于说明)  
class Animal:  
    pass  
  
# 具体的动物类  
class Dog:  
    def make_sound(self):  
        return "Woof!"  
  
class Cat:  
    def make_sound(self):  
        return "Meow!"  
  
# 使用鸭子类型来处理不同类型的动物  
def animal_sound(animal):  
    if hasattr(animal, 'make_sound'):  
        print(animal.make_sound())  
    else:  
        print("This animal doesn't make any sound.")  
  
# 使用函数处理不同类型的动物对象  
dog = Dog()  
cat = Cat()  
animal_sound(dog)  # 输出: Woof!  
animal_sound(cat)  # 输出: Meow!

例如,你可以通过验证一个对象是否遵循迭代协议,判断它是可迭代的。对于许多对象,这意味着它有一个 __iter__ 魔术方法,其它更好的判断方法是使用 iter 函数:

可以用这个功能编写可以接受多种输入类型的函数。常见的例子是编写一个函数可以接受任意类
型的序列(list、tuple、ndarray)或是迭代器。你可先检验对象是否是列表(或是NUmPy数
组),如果不是的话,将其转变成列表: 

 4.is方法

1.使用场景

1.要判断两个引用是否指向同一个对象,可以使用 is 方法。

list 是创建一个新的Python列表(即复制)。

2.is 和 is not 常用来判断一个变量是否为 None

2.is 和 == 的区别:

3.其他的二元运算符和比较运算符

5.可变与不可变对象 

Python中的大多数对象,比如列表、字典、NumPy数组,和用户定义的类型(类),都是可变的。意味着这些对象或包含的值可以被修改:

字符串和元组,是不可变的对象: 

6.布尔值

布尔值可以与and和or结合使用:

7.类型转换 

str、bool、int和float也是函数,可以用来转换类型:

8.日期和时间 

Python内建的 datetime 模块提供了 datetime 、 date 和 time 类型。 datetime 类型结合了 date 和 time ,是最常使用的:

当你聚类或对时间序列进行分组,替换datetimes的time字段有时会很有用。例如,用0替换分和秒:因为 datetime.datetime 是不可变类型,下面的方法会产生新的对象。

两个datetime对象的差会产生一个 datetime.timedelta 类型:

结果 timedelta(17, 7179) 指明了 timedelta 将17天、7179秒的编码方式。

 将 timedelta 添加到 datetime ,会产生一个新的偏移 datetime :

 9.控制语句中的 or 和 and

1.or运算符

如果至少有一个条件为真,则整个表达式的结果为真;如果所有条件都为假,则整个表达式的结果为假。

对于 or 运算符,如果第一个条件为真,则不会计算后续的条件。

2.and 运算符 

如果所有条件都为真,则整个表达式的结果为真;如果任何一个条件为假,则整个表达式的结果为假。

对于 and 运算符,如果第一个条件为假,则不会计算后续的条件。

3.示例代码

def func1():  
    print("func1 is called")  
    return False  
  
def func2():  
    print("func2 is called")  
    return True  
  
# and 短路求值  
if func1() and func2():  
    print("Both func1 and func2 returned True")  
else:  
    print("Either func1 or func2 returned False")  # 输出这一行  
    # 输出:  
    # func1 is called  
    # Either func1 or func2 returned False  
  
# or 短路求值  
if func1() or func2():  
    print("At least one of func1 or func2 returned True")  # 输出这一行  
    # 输出:  
    # func1 is called  
    # At least one of func1 or func2 returned True

4.注意点

and 运算符的优先级高于 or 运算符。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值