验证码的历史与发展
验证码,全称为 “Completely Automated Public Turing test to tell Computers and Humans Apart”,即全自动区分计算机和人类的图灵测试,Captcha。早在上个世纪 90 年代,为了防止恶意的网络机器人行为,像邮件轰炸、暴力破解密码等,验证码应运而生。
最初的验证码是简单的文本字符,如用户只需输入一组扭曲的字母和数字。然后验证码发展到图像验证码,例如,要求用户识别哪些图片中包含某个特定对象(比如猫、狗或汽车等)。随着技术的发展,更为复杂的验证码类型出现了,例如逻辑验证码(例如,3+4=?),音频验证码(用户必须听音频然后输入听到的字符)和 3D 验证码(用户需要解读 3D 对象或者场景)。
此外,也有一些新的验证码设计,为了提高用户体验同时维护网站安全,它们需要用户进行更为人性化的操作。例如,滑动验证码让用户通过滑动解锁,点击验证码让用户点击特定的图片或文字,旋转验证码则要求用户调整图片到正确的方向。
一些大公司也开发了自己的验证码系统。例如,Google 的 reCAPTCHA v2 引入了复杂的图像识别任务,需要用户选择包含特定物体(如汽车,交通灯)的图片;而 Google 的 reCAPTCHA v3 则摒弃了用户交互的方式,通过分析用户的行为模式来确定是人类还是机器。同样,第三方验证服务如 GeeTest CAPTCHA 和 hCaptcha 等,也为网站提供了验证服务,使得他们可以更好地防止自动化的恶意行为。
验证码破解的历史与发展
验证码破解的历史,与验证码的发展紧密相连。早期的验证码破解主要依赖于 OCR(Optical Character Recognition,光学字符识别)技术,这是一种将图像中的文本转换为机器可读的字符的技术,用于识别简单的文本验证码。
然而,随着验证码的复杂性的增加,验证码破解也需要更为复杂的技术。例如,对于图像验证码,可能需要使用图像处理技术来处理噪声和扭曲。这可能包括灰度化(将图像转换为黑白),二值化(将图像进一步简化为只有黑和白两种颜色),边缘检测(识别图像中的边缘)等步骤。
对于更为复杂的验证码,例如点击验证码和旋转验证码,可能需要使用更复杂的机器视觉技术。这可能涉及到特征提取(识别图像中的重要特征),对象识别(识别特定的对象或形状),甚至深度学习(训练模型来识别复杂的模式)。
近年来,随着人工智能的发展,机器学习和深度学习等技术也被应用于验证码破解中。例如,卷积神经网络(CNN)已经被用来识别复杂的图像验证码