一维前缀和模板(蓝桥)

一维前缀和的目的就是为了以空间换时间,把之前已经算过的数存起来,下次需要计算的时候直接查找

import java.util.Scanner;

// 1:无需package

// 2: 类名必须Main, 不可修改

public class Main {

public static void main(String[] args) {

Scanner scan = new Scanner(System.in);

//在此输入您的代码...

int n = scan.nextInt();

int q = scan.nextInt();

int [] sum = new int[n+1];

for(int i = 1; i <= n; i++){

int ai = scan.nextInt();

sum[i] = sum[i-1] + ai;

}

for(int i = 0; i < q; i++){

int l = scan.nextInt();

int r = scan.nextInt();

System.out.println(sum[r] - sum[l-1]);

}

scan.close();

}

}

<think>嗯,用户想了解蓝桥杯中组合数问题如何用前缀和技巧解决。首先,我得回忆一下组合数相关的题目类型。通常组合数问题会涉及到排列组合的计算,或者某些特定条件下的计数问题。前缀和一般用于优化区间和查询,或者处理累积量,比如累积积、频率统计等。可能的应用场景是什么呢? 比如,题目可能要求统计满足某种条件的组合数目,而直接计算可能会超时,这时候前缀和可以预处理一些信息,减少重复计算。例如,在二维数组或者矩阵中,统计某个区域内满足条件的元素数目,这时候前缀和数组可以快速给出结果。 然后想到蓝桥杯中的具体题目,比如2020年省赛的“矩阵”一题,可能需要用前缀和优化。题目可能是给定一个矩阵,找出所有子矩阵中元素和满足某种条件的情况数目。虽然这主要涉及子矩阵和,但组合数的计算可能需要前缀和来快速统计某些组合的可能性。 另外,组合数本身的计算可能涉及到动态规划或者递推公式,比如杨辉三角,但这里用户提到的是前缀和技巧,所以可能需要将前缀和与组合数的递推结合起来。比如,预处理某些前缀和数组,然后在计算组合数时快速查询。 再想想用户提供的引用中,引用[1]提到前缀积用于处理数组积的问题,避免使用除法。这可能类似于组合数的递推中,利用前缀积或前缀和来优化乘法或加法的步骤。例如,计算组合数C(n,k)时,可能需要前k个数的乘积除以某个数,但如果有模数的话,可以用前缀积结合逆元来处理。 或者,题目可能涉及到多次查询组合数的某个区间和,比如求C(n,0)+C(n,1)+...+C(n,k),这时候前缀和数组可以存储累积和,快速回答查询。 比如,假设题目要求多次查询某个n和k,求组合数的前k项和,这时候预处理每个n的前缀和数组就可以快速响应查询。这种情况下,前缀和的应用就非常直接。 不过,具体到蓝桥杯的题目,可能需要更具体的例子。比如,某个问题需要统计满足a[i] + a[j] = target的情况数目,其中i < j,这时候可以用前缀和或者哈希表记录之前出现的数字,从而快速查找符合条件的配对。但这可能更偏向于两数之和的问题,而不是组合数。 再考虑组合数的性质,比如C(n,k) = C(n-1,k-1) + C(n-1,k),这本身就是一种递推关系,可能可以用动态规划来预处理组合数表。但如何结合前缀和呢?或许在预处理过程中,需要用到前缀和来优化某些步骤。 例如,假设题目要求计算从n个元素中选取至少k个元素的组合数之和,即sum_{i=k}^n C(n,i)。这时候,可以预处理组合数的行前缀和,每个n对应的各个k的前缀和,从而在O(1)时间内得到结果。 或者,如果题目涉及二维的组合数问题,比如在网格中从起点到终点只能向右或向下走,求路径数,这时候路径数的计算可以用动态规划,而前缀和可能用于优化某些重复计算的路径数目。 比如,在一个网格中,某些格子有障碍,需要统计从左上到右下的路径数目,这时候每个格子的路径数等于左边和上边格子的路径数之和。这种情况下,逐行计算时,可以用前缀和数组来快速累加左边所有可达的路径数,从而优化时间复杂度。 不过这些例子是否属于组合数问题中使用前缀和技巧呢?可能需要更具体的蓝桥杯真题来分析。 根据用户提供的引用[5]中的代码,是关于质数判断的,可能与组合数问题关系不大,但引用[1]和[2]提到了前缀积和算法策略,这可能与组合数的优化有关。 现在,假设有一个蓝桥杯题目,要求计算满足某些条件的组合数之和。例如,给定一个数组,找出所有子集的大小为k的子集数目,满足子集元素的和满足某个条件。这时候可能需要用前缀和来快速计算子集的和,或者用动态规划结合前缀和来统计符合条件的组合数。 或者,题目可能类似于计算组合数模某个数的结果,然后进行区间查询,这时候预处理前缀和数组可以加速查询过程。 例如,题目给出多个查询,每个查询要求计算C(n,0) mod m + C(n,1) mod m + ... + C(n,k) mod m。这时候预处理每个n的前缀和数组,存储mod后的结果,可以快速响应每个查询。 不过,这样的例子是否属于蓝桥杯的题目类型呢?需要具体查找相关真题。 比如,蓝桥杯2021年省赛的一道题,可能涉及到组合数和前缀和的结合。例如,题目给出一个序列,要求计算所有长度为k的连续子序列中,某个特征值的总和。这时候前缀和可以预处理每个位置的累积值,然后通过滑动窗口或直接计算来得到结果。 不过,这可能更偏向于滑动窗口技巧而非组合数。因此,可能需要更直接的应用场景。 总结来说,组合数问题中使用前缀和技巧的可能场景包括: 1. 预处理组合数的前缀和数组,以快速回答区间和的查询。 2. 在动态规划求解组合数问题时,利用前缀和优化状态转移。 3. 处理涉及组合数累积和的问题,如求组合数模某个数的总和。 4. 在二维组合问题中,使用二维前缀和来快速计算区域内的组合数目。 接下来,需要给出具体的例子和解法,例如蓝桥杯中的某个真题,并说明如何应用前缀和技巧。例如: 题目:给定n个元素,求所有子集大小为k的子集数目,满足子集元素的和是m的倍数。其中n和k的范围较大,需要高效算法。 可能的解法:利用动态规划,状态为dp[i][j][s]表示前i个元素中选j个,和模m为s的方案数。状态转移方程为dp[i][j][s] = dp[i-1][j][s] + dp[i-1][j-1][(s - a[i]) mod m]。这里如果直接计算,时间复杂度可能较高。但可能通过优化,比如利用前缀和来加速某些步骤。 或者,另一个例子,题目要求计算C(n,0) + C(n,1) + ... + C(n,k)的值,多次查询不同的n和k。这时候预处理前缀和数组可以快速回答。 不过具体的蓝桥杯题目可能需要更针对性的分析。根据用户的需求,应该提供一个具体的例子,比如蓝桥杯中的“组合数问题”,并结合前缀和技巧的解法步骤,说明如何应用。 另外,用户引用的参考文献中,引用[1]提到前缀积解决数组积问题,避免除法。这可能类似于组合数计算中的预处理阶乘和逆元,从而快速计算组合数模大数的情况。例如,计算C(n,k) mod p时,预处理阶乘数组和逆元数组,然后通过前缀积的方式快速得到结果。这可能也是前缀和/积的一种应用,但属于数论优化的范畴。 综上,需要将组合数的计算与前缀和技巧结合,给出具体的算法步骤和代码示例,可能涉及动态规划、数论优化或预处理前缀和数组等方法。最后,生成相关问题,帮助用户进一步理解。</think>### 蓝桥杯组合数问题中的前缀和技巧应用 在蓝桥杯竞赛中,**组合数问题**常通过前缀和技巧实现时间复杂度优化。以下通过典型例题说明解法思路: --- #### 示例问题:区间组合数求和 **题目**:给定$q$次查询,每次给出$n$和$k$,要求计算$\sum_{i=0}^{k} C(n,i)$。其中$1 \leq q \leq 10^5$,$1 \leq n, k \leq 10^3$。 **前缀和解法**: 1. **预处理组合数表**:利用递推公式$C(n, k) = C(n-1, k-1) + C(n-1, k)$生成组合数表。 2. **构建前缀和数组**:对每个$n$,预计算前缀和$S[n][k] = \sum_{i=0}^{k} C(n,i)$。 3. **快速查询**:每次查询时间复杂度降为$O(1)$。 **代码实现**: ```python MOD = 10**9 + 7 max_n = 1000 max_k = 1000 # 初始化组合数表 C = [[0] * (max_k + 1) for _ in range(max_n + 1)] for n in range(max_n + 1): C[n][0] = 1 for k in range(1, min(n, max_k) + 1): C[n][k] = (C[n-1][k-1] + C[n-1][k]) % MOD # 构建前缀和数组 S = [[0] * (max_k + 1) for _ in range(max_n + 1)] for n in range(max_n + 1): S[n][0] = 1 for k in range(1, max_k + 1): S[n][k] = (S[n][k-1] + C[n][k]) % MOD # 查询示例 def query(n, k): return S[n][min(k, n)] ``` --- #### 典型例题:二维路径计数问题 **题目**:在$m \times n$网格中,从左上角到右下角,每次只能向右或向下走。求路径总数$C(m+n-2, m-1)$[^3]。若某些格子有障碍,如何快速计算有效路径数? **前缀和优化思路**: 1. **动态规划状态**:$dp[i][j]$表示到达格子$(i,j)$的路径数。 2. **递推公式**:若当前格子无障碍,$dp[i][j] = dp[i-1][j] + dp[i][j-1]$。 3. **二维前缀和优化**:通过预处理行或列的前缀和,将状态转移复杂度从$O(1)$优化到更高效。 --- #### 组合数问题中的其他应用场景 1. **模运算优化**:预处理阶乘前缀积和逆元,快速计算$C(n,k) \mod p$[^1]。 2. **多重约束统计**:如统计满足$a_i + a_j = k$的组合数时,用哈希表记录频率前缀和[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值