多元函数的基本概念——“高等数学”

本文介绍了多元函数的基础知识,包括平面点集、坐标平面、邻域和点集的分类。接着讲解了多元函数的概念、值域和自然定义域,以及多元函数的极限和连续性的定义。文中通过例题帮助读者理解和掌握这些概念,并提到了在有界闭区域上多元连续函数的性质,如有界性、最大值最小值定理和介值定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各位CSDN的uu们你们好呀,今天,小雅兰的内容是多元函数的基本概念,下面,让我们一起进入多元函数的世界吧


平面点集

多元函数的概念

多元函数的极限

多元函数的连续性

有界闭区域上多元连续函数的性质


平面点集

第一个是坐标平面

一个平面,在由x轴、y轴所组成的平面直角坐标系内,也就是说在平面直角坐标系中,就叫坐标平面。 

 第二个就是平面点集了

第三个是邻域

 

 

第四个是点与点集的关系

分为内点、外点、边界点、边界、聚点

 

 

由点集所属点的特征

分为开集、闭集、连通集、非连通集

 举两个例子:

 

区域:连通的开集 

闭区域:开区域连同其边界一起构成的点集

下面,来看两个例子:

 有界集、无界集


 多元函数的概念

引例

 

 定义

值域 

 推广

自然定义域:使等式有意义的点的集合

二元函数z=f(x,y)的圆形 

 

这样一个三元方程的形式,就是空间中的这样一个曲面 


 多元函数的极限

首先,我们先来看看一元函数的极限:

具体的定义:

 注意事项

下面,来看一个例题:

  

 

 

 下面,来看一个例题:


 多元函数的连续性

还是以一元函数的连续性为例:

连续的定义

  

 下面,还是来看一个例题:

间断点定义 

 

  

下面,来看几个例题:


 有界闭区域上多元连续函数的性质

 有界性与最大值、最小值定理

介值定理 


 好啦,小雅兰今天的内容就到这里啦,还要继续学习高数噢,希望能过校赛!!!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

答案说明所有。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值