9.1 多元函数的基本概念

 

 

第九章 多元函数微分法及其应用

在之前的章节中,我们讨论的函数都只有一个自变量,这种函数叫做一元函数。但在很多实际问题中,往往牵涉到多方面的因素,反映到数学上,就是一个变量依赖于多个变量的情形。这就提出了多元函数以及多元函数的微分和积分问题。本章将在一元函数微分学的基础上,讨论多元函数的微分法及其应用。讨论中我们以二元函数为主,因为从一元函数到二元函数会产生新的问题,而从二元函数到二元以上的多元函数则可以类推。

第一节 多元函数的基本概念

一、平面点集与 n 维空间

在讨论一元函数时,一些概念、理论和方法都是基于 𝑅1R1 中的点集、两点间的距离、区间和邻域等概念。为了将一元函数微积分推广到多元的情形,首先需要将上述一些概念加以推广,同时还需涉及一些其他概念。为此先引入平面点集的一些基本概念,将有关概念从 𝑅1R1 中的情形推广到 𝑅2R2 中;然后引入 n 维空间,以便推广到一般的 𝑅𝑛Rn 中。

1. 平面点集

由平面解析几何知道,当在平面上引入了一个直角坐标系后,平面上的点 𝑃P 与有序二元实数组 (𝑥,𝑦)(x,y) 之间就建立了一一对应关系。于是,我们常把有序实数组 (𝑥,𝑦)(x,y) 与平面上的点 𝑃P 视作是等同的。这种建立了坐标系的平面称为坐标平面。二元有序实数组 (𝑥,𝑦)(x,y) 的全体,即 𝑅2=𝑅×𝑅={(𝑥,𝑦)∣𝑥,𝑦∈𝑅}R2=R×R={(x,y)∣x,y∈R} 就表示坐标平面。

坐标平面上具有某种性质 𝑃P 的点的集合,称为平面点集,记作

例如,平面上以原点为中心、半径为 𝑟r 的圆内所有点的集合是

如果以点 𝑃P 表示 (𝑥,𝑦)(x,y),∥𝑂𝑃∥∥OP∥ 表示点 𝑃P 到原点 𝑂O 的距离,那么集合 𝐶C 也可表示成

现在我们来引入 𝑅2R2 中邻域的概念。

设 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 是 𝑥𝑦xy 平面上的一个点,𝛿δ 是某一正数。与点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 距离小于 𝛿δ 的点 𝑃(𝑥,𝑦)P(x,y) 的全体,称为点 𝑃0P0​ 的 𝛿δ 邻域,记作 𝑈(𝑃0,𝛿)U(P0​,δ),即

也就是

点 𝑃0P0​ 的去心 𝛿δ 邻域,记作 𝑈(𝑃0,𝛿)U(P0​,δ),即

在几何上,𝑈(𝑃0,𝛿)U(P0​,δ) 就是 𝑥𝑦xy 平面上以点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 为中心、𝛿>0δ>0 为半径的圆内部的点 𝑃(𝑥,𝑦)P(x,y) 的全体。

如果不需要强调邻域的半径 𝛿δ,则用 𝑈(𝑃0)U(P0​) 表示点 𝑃0P0​ 的某个邻域,点 𝑃0P0​ 的去心邻域记作 𝑈′(𝑃0)U′(P0​)。

下面利用邻域来描述点和点集之间的关系。任意一点 𝑃∈𝑅2P∈R2 与任意一个点集 𝐸⊆𝑅2E⊆R2 之间必有以下三种关系中的一种:

  1. 内点:如果存在点 𝑃P 的某个邻域 𝑈(𝑃)U(P),使得 𝑈(𝑃)⊆𝐸U(P)⊆E,那么称 𝑃P 为 𝐸E 的内点(如图 9-1 中,𝑃1P1​ 为 𝐸E 的内点)。
  2. 外点:如果存在点 𝑃P 的某个邻域 𝑈(𝑃)U(P),使得 𝑈(𝑃)∩𝐸=∅U(P)∩E=∅,那么称 𝑃P 为 𝐸E 的外点(如图 9-1 中,𝑃2P2​ 为 𝐸E 的外点)。
  3. 边界点:如果点 𝑃P 的任一邻域内既含有属于 𝐸E 的点,又含有不属于 𝐸E 的点,那么称 𝑃P 为 𝐸E 的边界点(如图 9-1 中,𝑃3P3​ 为 𝐸E 的边界点)。

∂𝐸={𝑃∣𝑃是 𝐸的边界点}∂E={P∣P是 E的边界点}

E 的内点必属于 E;E 的外点必定不属于 E;而 E 的边界点可能属于 E,也可能不属于 E。

任意一点 𝑃P 与一个点集 𝐸E 之间除了上述三种关系之外,还有另一种关系,这就是下面定义的聚点。

聚点:如果对于任意给定的 𝛿>0δ>0,点 𝑃P 的去心邻域 𝑈′(𝑃,𝛿)U′(P,δ) 内总有 𝐸E 中的点,那么称 𝑃P 是 𝐸E 的聚点。

由聚点的定义可知,点集 𝐸E 的聚点 𝑃P 本身,可以属于 𝐸E,也可以不属于 𝐸E。

例如,设平面点集

𝐸={(𝑥,𝑦)∣1<𝑥2+𝑦2≤2}E={(x,y)∣1<x2+y2≤2}

满足 1<𝑥2+𝑦2<21<x2+y2<2 的一切点 (𝑥,𝑦)(x,y) 都是 𝐸E 的内点;满足 𝑥2+𝑦2=1x2+y2=1 的一切点 (𝑥,𝑦)(x,y) 都是 𝐸E 的边界点,它们都不属于 𝐸E;满足 𝑥2+𝑦2=2x2+y2=2 的一切点 (𝑥,𝑦)(x,y) 也是 𝐸E 的边界点,它们都属于 𝐸E;点集 𝐸E 以及它的边界 ∂𝐸∂E 上的一切点都是 𝐸E 的聚点。

根据点集所属点的特征,再来定义一些重要的平面点集。

开集:如果点集 𝐸E 的点都是 𝐸E 的内点,那么称 𝐸E 为开集。

闭集:如果点集 𝐸E 的边界 ∂𝐸⊆𝐸∂E⊆E,那么称 𝐸E 为闭集。

例如,集合 (𝑥,𝑦)∣1<𝑥2+𝑦2<2(x,y)∣1<x2+y2<2 是开集;集合 (𝑥,𝑦)∣1≤𝑥2+𝑦2≤2(x,y)∣1≤x2+y2≤2 是闭集;而集合 (𝑥,𝑦)∣1<𝑥2+𝑦2≤2(x,y)∣1<x2+y2≤2 既非开集,也非闭集。

连通集:如果点集 𝐸E 内任何两点,都可用折线联结起来,且该折线上的点都属于 𝐸E,那么称 𝐸E 为连通集。

区域(或开区域):连通的开集称为区域或开区域。

闭区域:开区域连同它的边界一起所构成的点集称为闭区域。

例如,集合 (𝑥,𝑦)∣1<𝑥2+𝑦2<2(x,y)∣1<x2+y2<2 是区域,而集合 (𝑥,𝑦)∣1≤𝑥2+𝑦2≤2(x,y)∣1≤x2+y2≤2 是闭区域。

有界集:对于平面点集 𝐸E,如果存在某一正数 𝑟r,使得

𝐸⊆𝑈(0,𝑟)E⊆U(0,r)

其中 0 是坐标原点,那么称 𝐸E 为有界集。

无界集:一个集合如果不是有界集,就称这个集合为无界集。

例如,集合 (𝑥,𝑦)∣1≤𝑥2+𝑦2≤2(x,y)∣1≤x2+y2≤2 是有界闭区域,集合 (𝑥,𝑦)∣𝑥+𝑦>0(x,y)∣x+y>0 是无界开区域,集合 (𝑥,𝑦)∣𝑥+𝑦≥0(x,y)∣x+y≥0 是无界闭区域。        

 

二、多元函数的概念

在很多自然现象以及实际问题中,经常会遇到多个变量之间的依赖关系,举例如下:

例1: 圆柱体的体积 𝑉V 和它的底半径 𝑟r、高 ℎh 之间具有关系: 𝑉=𝜋𝑟2ℎV=πr2h 这里,当 𝑟r 和 ℎh 在集合 {(𝑟,ℎ)∣𝑟>0,ℎ>0}{(r,h)∣r>0,h>0} 内取定一对值 (𝑟,ℎ)(r,h) 时,𝑉V 的对应值就随之确定。

例2: 一定量的理想气体的压强 𝑝p、体积 𝑉V 和绝对温度 𝑇T 之间具有关系: 𝑝𝑉=𝑅𝑇pV=RT 其中 𝑅R 为常数。这里,当 𝑉V 和 𝑇T 在集合 {(𝑉,𝑇)∣𝑉>0,𝑇>𝑇0}{(V,T)∣V>0,T>T0​} 内取定一对值 (𝑉,𝑇)(V,T) 时,𝑝p 的对应值就随之确定。

例3: 设 𝑅R 是电阻 𝑅1R1​ 和 𝑅2R2​ 并联后的总电阻,由电学知道,它们之间具有关系: 1𝑅=1𝑅1+1𝑅2R1​=R1​1​+R2​1​ 这里,当 𝑅1R1​ 和 𝑅2R2​ 在集合 {(𝑅1,𝑅2)∣𝑅1>0,𝑅2>0}{(R1​,R2​)∣R1​>0,R2​>0} 内取定一对值 (𝑅1,𝑅2)(R1​,R2​) 时,𝑅R 的对应值就随之确定。

上面三个例子的具体意义虽各不相同,但它们却有共同的性质,抽出这些共性就可得出以下二元函数的定义。

定义 1

设 𝐷D 是 𝑅2R2 的一个非空子集,称映射 𝑓:𝐷→𝑅f:D→R 为定义在 𝐷D 上的二元函数,通常记为: 𝑧=𝑓(𝑥,𝑦),(𝑥,𝑦)∈𝐷z=f(x,y),(x,y)∈D 或 𝑧=𝑓(𝑃),𝑃∈𝐷z=f(P),P∈D 其中点集 𝐷D 称为该函数的定义域,𝑥x 和 𝑦y 称为自变量,𝑧z 称为因变量。

上述定义中,与自变量 𝑥x 和 𝑦y 的一对值(即二元有序实数组)(𝑥,𝑦)(x,y) 相对应的因变量 𝑧z 的值,也称为 𝑓f 在点 (𝑥,𝑦)(x,y) 处的函数值,记作 𝑓(𝑥,𝑦)f(x,y),即 𝑧=𝑓(𝑥,𝑦)z=f(x,y)。函数值 𝑓(𝑥,𝑦)f(x,y) 的全体所构成的集合称为函数 𝑓f 的值域,记作 𝑓(𝐷)f(D),即: 𝑓(𝐷)={𝑧∣𝑧=𝑓(𝑥,𝑦),(𝑥,𝑦)∈𝐷}f(D)={z∣z=f(x,y),(x,y)∈D}

与一元函数的情形相仿,记号 𝑓f 与 𝑓(𝑥,𝑦)f(x,y) 的意义是有区别的,但习惯上常用记号“𝑓(𝑥,𝑦),(𝑥,𝑦)∈𝐷f(x,y),(x,y)∈D”或“𝑧=𝑓(𝑥,𝑦),(𝑥,𝑦)∈𝐷z=f(x,y),(x,y)∈D”来表示 𝐷D 上的二元函数 𝑓f。表示二元函数的记号 𝑓f 也是可以任意选取的,例如也可以记为 𝑧=𝜑(𝑥,𝑦)z=φ(x,y),𝑧=𝑧(𝑥,𝑦)z=z(x,y) 等。

类似地,可以定义三元函数 𝑢=𝑓(𝑥,𝑦,𝑧),(𝑥,𝑦,𝑧)∈𝐷u=f(x,y,z),(x,y,z)∈D 以及三元以上的函数。一般地,把定义1中的平面点集 𝐷D 换成 𝑛n 维空间 𝑅𝑛Rn 内的点集 𝐷D,映射 𝑓:𝐷→𝑅f:D→R 就称为定义在 𝐷D 上的 𝑛n 元函数,通常记为: 𝑢=𝑓(𝑥1,𝑥2,…,𝑥𝑛),(𝑥1,𝑥2,…,𝑥𝑛)∈𝐷u=f(x1​,x2​,…,xn​),(x1​,x2​,…,xn​)∈D 或简记为: 𝑢=𝑓(𝑥),𝑥=(𝑥1,𝑥2,…,𝑥𝑛)∈𝐷u=f(x),x=(x1​,x2​,…,xn​)∈D 也可记为: 𝑢=𝑓(𝑃),𝑃(𝑥1,𝑥2,…,𝑥𝑛)∈𝐷u=f(P),P(x1​,x2​,…,xn​)∈D

在 𝑛=2n=2 或 33 时,习惯上将点 (𝑥1,𝑥2)(x1​,x2​) 与点 (𝑥1,𝑥2,𝑥3)(x1​,x2​,x3​) 分别写成 (𝑥,𝑦)(x,y) 与 (𝑥,𝑦,𝑧)(x,y,z)。这时,若用字母表示 𝑅2R2 或 𝑅3R3 中的点,即写成 𝑃(𝑥,𝑦)P(x,y) 或 𝑀(𝑥,𝑦,𝑧)M(x,y,z),则相应的二元函数及三元函数也可简记为 𝑧=𝑓(𝑃)z=f(P) 及 𝑢=𝑓(𝑀)u=f(M)。

当 𝑛=1n=1 时,𝑛n 元函数就是一元函数;当 𝑛≥2n≥2 时,𝑛n 元函数统称为多元函数。

关于多元函数的定义域,与一元函数相类似,我们作如下约定:在一般地讨论用算式表达的多元函数 𝑢=𝑓(𝑥)u=f(x) 时,就以使这个算式有意义的变元 𝑥x 的值所组成的点集为这个多元函数的自然定义域。因而,对这类函数,它的定义域不再特别标出。例如,函数 𝑧=ln⁡(𝑥+𝑦)z=ln(x+y) 的定义域为: (𝑥,𝑦)∣𝑥+𝑦>0(x,y)∣x+y>0 这是一个无界开区域。又如,函数 𝑧=arcsin⁡(𝑥2+𝑦2)z=arcsin(x2+y2) 的定义域为: (𝑥,𝑦)∣𝑥2+𝑦2≤1(x,y)∣x2+y2≤1 这是一个有界闭区域。

设函数 𝑧=𝑓(𝑥,𝑦)z=f(x,y) 的定义域为 𝐷D。对于任意取定的点 𝑃(𝑥,𝑦)∈𝐷P(x,y)∈D,对应的函数值为 𝑧=𝑓(𝑥,𝑦)z=f(x,y)。这样,以 𝑥x 为横坐标、𝑦y 为纵坐标和 𝑧=𝑓(𝑥,𝑦)z=f(x,y) 为竖坐标在空间就确定一点 𝑀(𝑥,𝑦,𝑧)M(x,y,z)。当 (𝑥,𝑦)(x,y) 遍取 𝐷D 上的一切点时,得到一个空间点集: {(𝑥,𝑦,𝑧)∣𝑧=𝑓(𝑥,𝑦),(𝑥,𝑦)∈𝐷}{(x,y,z)∣z=f(x,y),(x,y)∈D} 这个点集称为二元函数 𝑧=𝑓(𝑥,𝑦)z=f(x,y) 的图形。通常我们也说二元函数的图形是一张曲面。

例如,由空间解析几何知道,线性函数 𝑧=𝑎𝑥+𝑏𝑦+𝑐z=ax+by+c 的图形是一张平面,而函数 𝑧=𝑥2+𝑦2z=x2+y2 的图形是旋转抛物面。

 

 

三、多元函数的极限

我们先讨论二元函数 𝑧=𝑓(𝑥,𝑦)z=f(x,y) 当 (𝑥,𝑦)→(𝑥0,𝑦0)(x,y)→(x0​,y0​) 时的极限。这意味着点 𝑃(𝑥,𝑦)P(x,y) 以任何方式趋于点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​),也就是点 𝑃P 与点 𝑃0P0​ 间的距离趋于零,即

与一元函数的极限概念类似,如果在 𝑃(𝑥,𝑦)→𝑃0(𝑥0,𝑦0)P(x,y)→P0​(x0​,y0​) 的过程中,对应的函数值 𝑓(𝑥,𝑦)f(x,y) 无限接近于一个确定的常数 𝐴A,那么就说 𝐴A 是函数 𝑓(𝑥,𝑦)f(x,y) 当 (𝑥,𝑦)→(𝑥0,𝑦0)(x,y)→(x0​,y0​) 时的极限。下面用“𝜖−𝛿ϵ−δ”语言描述这个极限概念。

定义 2

设二元函数 𝑓(𝑃)=𝑓(𝑥,𝑦)f(P)=f(x,y) 的定义域为 𝐷D,𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 是 𝐷D 的聚点。如果存在常数 𝐴A,对于任意给定的正数 𝜖ϵ,总存在正数 𝛿δ,使得当点 𝑃(𝑥,𝑦)∈𝐷∩𝑈(𝑃0,𝛿)P(x,y)∈D∩U(P0​,δ) 时,都有:

成立,那么就称常数 𝐴A 为函数 𝑓(𝑥,𝑦)f(x,y) 当 (𝑥,𝑦)→(𝑥0,𝑦0)(x,y)→(x0​,y0​) 时的极限,记作:

lim⁡(𝑥,𝑦)→(𝑥0,𝑦0)𝑓(𝑥,𝑦)=𝐴lim(x,y)→(x0​,y0​)​f(x,y)=A

𝑓(𝑥,𝑦)→𝐴当(𝑥,𝑦)→(𝑥0,𝑦0)f(x,y)→A当(x,y)→(x0​,y0​)

也记作:

lim⁡𝑃→𝑃0𝑓(𝑃)=𝐴limP→P0​​f(P)=A

为了区别于一元函数的极限,我们把二元函数的极限叫做二重极限

例 4

设 𝑓(𝑥,𝑦)=(𝑥2+𝑦2)sin⁡1𝑥2+𝑦2f(x,y)=(x2+y2)sinx2+y21​,求证:

lim⁡(𝑥,𝑦)→(0,0)𝑓(𝑥,𝑦)=0lim(x,y)→(0,0)​f(x,y)=0

证:

这里函数 𝑓(𝑥,𝑦)f(x,y) 的定义域为 𝐷=𝑅2∖{(0,0)}D=R2∖{(0,0)},点 𝑂(0,0)O(0,0) 为 𝐷D 的聚点。因为:

可见,对于任意 𝜖>0ϵ>0,取 𝛿=𝜖δ=ϵ​,则当:

0<(𝑥−0)2+(𝑦−0)2<𝛿0<(x−0)2+(y−0)2​<δ

即 𝑃(𝑥,𝑦)∈𝐷∩𝑈(0,𝛿)P(x,y)∈D∩U(0,δ) 时,总有:

∣𝑓(𝑥,𝑦)−0∣<𝜖∣f(x,y)−0∣<ϵ

成立,所以:

lim⁡(𝑥,𝑦)→(0,0)𝑓(𝑥,𝑦)=0lim(x,y)→(0,0)​f(x,y)=0

必须注意,所谓二重极限存在,是指 𝑃(𝑥,𝑦)P(x,y) 以任何方式趋于 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 时,𝑓(𝑥,𝑦)f(x,y) 都无限接近于 𝐴A。因此,如果 𝑃(𝑥,𝑦)P(x,y) 以某一特殊方式,例如沿着一条定直线或定曲线趋于 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 时,即使 𝑓(𝑥,𝑦)f(x,y) 无限接近于某一确定值,我们还不能由此断定函数的极限存在。但是反过来,如果当 𝑃(𝑥,𝑦)P(x,y) 以不同的方式趋于 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 时 𝑓(𝑥,𝑦)f(x,y) 趋于不同的值,那么就可以断定这个函数的极限不存在。下面用例子来说明这种情形。

考察函数:

𝑓(𝑥,𝑦)=𝑥2−𝑦2𝑥2+𝑦2f(x,y)=x2+y2x2−y2​

显然,当点 𝑃(𝑥,𝑦)P(x,y) 沿 𝑥x 轴趋于点 (0,0)(0,0) 时:

lim⁡𝑥→0𝑓(𝑥,0)=lim⁡𝑥→0𝑥2−02𝑥2+02=lim⁡𝑥→01=1limx→0​f(x,0)=limx→0​x2+02x2−02​=limx→0​1=1

又当点 𝑃(𝑥,𝑦)P(x,y) 沿 𝑦y 轴趋于点 (0,0)(0,0) 时:

lim⁡𝑦→0𝑓(0,𝑦)=lim⁡𝑦→002−𝑦202+𝑦2=lim⁡𝑦→0−1=−1limy→0​f(0,y)=limy→0​02+y202−y2​=limy→0​−1=−1

虽然点 𝑃(𝑥,𝑦)P(x,y) 以上述两种特殊方式(沿 𝑥x 轴或沿 𝑦y 轴)趋于原点时函数的极限存在并且相等,但是 lim⁡(𝑥,𝑦)→(0,0)𝑓(𝑥,𝑦)lim(x,y)→(0,0)​f(x,y) 并不存在。这是因为当点 𝑃(𝑥,𝑦)P(x,y) 沿着直线 𝑦=𝑘𝑥y=kx 趋于点 (0,0)(0,0) 时,有:

lim⁡𝑥→0𝑓(𝑥,𝑘𝑥)=lim⁡𝑥→0𝑥2−(𝑘𝑥)2𝑥2+(𝑘𝑥)2=lim⁡𝑥→01−𝑘21+𝑘2limx→0​f(x,kx)=limx→0​x2+(kx)2x2−(kx)2​=limx→0​1+k21−k2​

显然它是随着 𝑘k 的值的不同而改变的。

以上关于二元函数的极限概念,可相应地推广到 𝑛n 元函数 𝑢=𝑓(𝑃)u=f(P),即 𝑢=𝑓(𝑥1,𝑥2,…,𝑥𝑛)u=f(x1​,x2​,…,xn​)。

例 5

求:

lim⁡(𝑥,𝑦)→(0,2)𝑥sin⁡(1𝑦−2)lim(x,y)→(0,2)​xsin(y−21​)

解:

这里函数 𝑓(𝑥,𝑦)=𝑥sin⁡(1𝑦−2)f(x,y)=xsin(y−21​) 的定义域为 𝐷={(𝑥,𝑦)∣𝑥≠0,𝑦≠2}D={(x,y)∣x=0,y=2},𝑃0(0,2)P0​(0,2) 为 𝐷D 的聚点。

由积的极限运算法则,得:

 

 

 

四、多元函数的连续性

理解了函数极限的概念,就不难说明多元函数的连续性。

定义 3

设二元函数 𝑓(𝑃)=𝑓(𝑥,𝑦)f(P)=f(x,y) 的定义域为 𝐷D,𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 为 𝐷D 的聚点,且 𝑃0∈𝐷P0​∈D。如果

那么称函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 连续。

设函数 𝑓(𝑥,𝑦)f(x,y) 在 𝐷D 上有定义,𝐷D 内的每一点都是函数定义域的聚点。如果函数 𝑓(𝑥,𝑦)f(x,y) 在 𝐷D 的每一点都连续,那么就称函数 𝑓(𝑥,𝑦)f(x,y) 在 𝐷D 上连续,或者称 𝑓(𝑥,𝑦)f(x,y) 是 𝐷D 上的连续函数。

以上关于二元函数的连续性概念,可相应地推广到 𝑛n 元函数 𝑓(𝑃)f(P) 上去。

下面,我们把一元基本初等函数看成二元函数的特例(即另一个自变量不出现),来讨论它的连续性。先看一个例子。

例 6

设 𝑓(𝑥,𝑦)=sin⁡𝑥f(x,y)=sinx,证明 𝑓(𝑥,𝑦)f(x,y) 是 𝑅2R2 上的连续函数。

证:

设 𝑃0(𝑥0,𝑦0)∈𝑅2P0​(x0​,y0​)∈R2。对于任意给定的 𝜖>0ϵ>0,由于 sin⁡𝑥sinx 在 𝑥0x0​ 处连续,故存在 𝛿>0δ>0,当 ∣𝑥−𝑥0∣<𝛿∣x−x0​∣<δ 时,有:

以上述 𝛿δ 作 𝑃0P0​ 的 𝛿δ 邻域 𝑈(𝑃0,𝛿)U(P0​,δ),则当 𝑃(𝑥,𝑦)∈𝑈(𝑃0,𝛿)P(x,y)∈U(P0​,δ) 时,显然有:

从而:

即 𝑓(𝑥,𝑦)=sin⁡𝑥f(x,y)=sinx 在点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 连续。由 𝑃0P0​ 的任意性知,sin⁡𝑥sinx 作为 𝑥,𝑦x,y 的二元函数在 𝑅2R2 上连续。

类似的讨论可知,一元基本初等函数看成二元函数或二元以上的多元函数时,它们在各自的定义域内都是连续的。

定义 4

设函数 𝑓(𝑥,𝑦)f(x,y) 的定义域为 𝐷D,𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 是 𝐷D 的聚点。如果函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 不连续,那么称 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 为函数 𝑓(𝑥,𝑦)f(x,y) 的间断点。

例如,前面讨论过的函数:

其定义域 𝐷=𝑅2D=R2,𝑂(0,0)O(0,0) 是 𝐷D 的聚点。𝑓(𝑥,𝑦)f(x,y) 当 (𝑥,𝑦)→(0,0)(x,y)→(0,0) 时的极限不存在,所以点 𝑂(0,0)O(0,0) 是该函数的一个间断点;又如函数:

其定义域为:

圆周 𝐶={(𝑥,𝑦)∣𝑥2+𝑦2=1}C={(x,y)∣x2+y2=1} 上的点都是 𝐷D 的聚点,而 𝑓(𝑥,𝑦)f(x,y) 在 𝐶C 上没有定义,当然 𝑓(𝑥,𝑦)f(x,y) 在 𝐶C 上各点都不连续,所以圆周 𝐶C 上各点都是该函数的间断点。

前面已经指出:一元函数中关于极限的运算法则,对于多元函数仍然适用。根据多元函数的极限运算法则,可以证明多元连续函数的和、差、积仍为连续函数;连续函数的商在分母不为零处仍连续;多元连续函数的复合函数也是连续函数。

与一元初等函数相类似,多元初等函数是指可用一个式子表示的多元函数,这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的。例如,𝑓(𝑥,𝑦)=𝑥+𝑦f(x,y)=x+y、𝑓(𝑥,𝑦)=sin⁡(𝑥+𝑦)f(x,y)=sin(x+y) 等都是多元初等函数。

根据上面指出的连续函数的和、差、积、商的连续性以及连续函数的复合函数的连续性,再利用基本初等函数的连续性,我们进一步可以得出如下结论:一切多元初等函数在其定义区域内是连续的。所谓定义区域是指包含在定义域内的区域或闭区域。

由多元初等函数的连续性,如果要求它在点 𝑃0P0​ 处的极限,而该点又在此函数的定义区域内,那么此极限值就是函数在该点的函数值,即:

例 7

求:

解:

函数 𝑓(𝑥,𝑦)=𝑥+𝑦𝑥𝑦f(x,y)=xyx+y​ 是初等函数,它的定义域为:

𝑃0(1,2)P0​(1,2) 为 𝐷D 的内点,故存在 𝑃0P0​ 的某一邻域 𝑈(𝑃0)⊆𝐷U(P0​)⊆D,而任何邻域都是区域,所以 𝑈(𝑃0)U(P0​) 是 𝑓(𝑥,𝑦)f(x,y) 的一个定义区域,因此:

例 8

求:

解:

𝑓(𝑥,𝑦)=𝑥𝑦𝑥2+𝑦2f(x,y)=x2+y2xy​

分析 𝑥𝑦𝑥2+𝑦2x2+y2xy​ 的极限:

首先,沿 𝑦=𝑘𝑥y=kx 方向趋于 (0,0)(0,0):

其次,沿 𝑦=0y=0 方向趋于 (0,0)(0,0):

两种不同方向得到的结果一致,故极限存在且为0:

与闭区间上一元连续函数的性质相类似,在有界闭区域上连续的多元函数具有如下性质:

性质 1(有界性与最大值最小值定理) 在有界闭区域 𝐷D 上的多元连续函数,必定在 𝐷D 上有界,且能取得它的最大值和最小值。

性质1就是说,若 𝑓(𝑃)f(P) 在有界闭区域 𝐷D 上连续,则必定存在常数 𝑀>0M>0,使得对一切 𝑃∈𝐷P∈D 有:

∣𝑓(𝑃)∣≤𝑀∣f(P)∣≤M

且存在 𝑃1,𝑃2∈𝐷P1​,P2​∈D,使得:

性质 2(介值定理) 在有界闭区域 𝐷D 上的多元连续函数必取得介于最大值和最小值之间的任何值。

性质 3(一致连续性定理) 在有界闭区域 𝐷D 上的多元连续函数必定在 𝐷D 上一致连续。

性质3就是说,若 𝑓(𝑃)f(P) 在有界闭区域 𝐷D 上连续,则对于任意给定的正数 𝜖ϵ,总存在正数 𝛿δ,使得对于 𝐷D 上的任意两点 𝑃1,𝑃2P1​,P2​,只要 ∥𝑃1𝑃2∥<𝛿∥P1​P2​∥<δ,都满足:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值