日常刷题ing

48. 旋转图像

给定一个 × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

示例 1:

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]

示例 2:

输入:matrix = [[5,1,9,

11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

 

思路:

首先,根据已经给出的示例找规律,可以找出二维数组的第一行分别旋转到了每一行的最后一个元素,第二行旋转到了每一行的倒数第二个元素的位置,以此类推。所以,我们可以先对矩阵进行转置,然后对矩阵进行关于中间轴的对称。得到最后的结果。

具体代码如下:

void swap(int *a,int *b)
{
    int t=*a;
    *a= *b;
    *b= t;
}
void rotate(int** matrix, int matrixSize, int* matrixColSize){
      int i=0,j=0;
      for(i=0;i<matrixSize;i++)
      {
          for(j=0;j<i;j++)
          {
              swap(&matrix[i][j],&matrix[j][i]);
          }
      }
      for(i=0;i<matrixSize;i++)
      {
          for(j=0;j<matrixSize/2;j++)
          {
          swap(&matrix[i][j],&matrix[i][matrixSize-1-j]);
          }
      }
}

 swap函数是用来进行数字的交换。

当然也可以先进行关于对角线对称然后进行中间轴对称。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川南767

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值