48. 旋转图像
给定一个 n × n 的二维矩阵 matrix
表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]] 输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:
输入:matrix = [[5,1,9,
11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] 输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
思路:
首先,根据已经给出的示例找规律,可以找出二维数组的第一行分别旋转到了每一行的最后一个元素,第二行旋转到了每一行的倒数第二个元素的位置,以此类推。所以,我们可以先对矩阵进行转置,然后对矩阵进行关于中间轴的对称。得到最后的结果。
具体代码如下:
void swap(int *a,int *b)
{
int t=*a;
*a= *b;
*b= t;
}
void rotate(int** matrix, int matrixSize, int* matrixColSize){
int i=0,j=0;
for(i=0;i<matrixSize;i++)
{
for(j=0;j<i;j++)
{
swap(&matrix[i][j],&matrix[j][i]);
}
}
for(i=0;i<matrixSize;i++)
{
for(j=0;j<matrixSize/2;j++)
{
swap(&matrix[i][j],&matrix[i][matrixSize-1-j]);
}
}
}
swap函数是用来进行数字的交换。
当然也可以先进行关于对角线对称然后进行中间轴对称。