算法的时间复杂度和空间复杂度

文章介绍了算法复杂度的概念,包括时间复杂度和空间复杂度的定义,通过大O的渐进表示法来简化分析。举例说明了几种常见算法的时间复杂度计算,如冒泡排序的O(N^2)、二分查找的O(logN)以及递归斐波那契的O(N^2),并指出空间复杂度主要考虑额外存储需求,如动态分配内存的情况。
摘要由CSDN通过智能技术生成

目录

1.算法的复杂度

2.时间复杂度

3.大O的渐进表示法

4.常见的时间复杂度的计算

5.空间复杂度

6.常见的空间复杂度的计算


1.算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间和空间(内存)资源,所以衡量一个算法的好坏,就是在时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

2.时间复杂度

时间复杂度的定义:算法的时间复杂度其实是一个函数,它定量的描述了该算法的运行时间。一个算法运行真正所耗费的时间,从理论上是无法算出来的(除非上机测试)。所以规定算法中的基本操作的执行次数,为算法的时间复杂度。

举个例子:

void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k)
{
 ++count;
}
int M = 10;
while (M--)
{
 ++count;
}

 Func1执行的基本操作次数:F(N)= N^2+2*N+10

其实这段代码的时间复杂度为O(N^2)

这里就要提到大O的渐进表示法:

3.大O的渐进表示法

大O符号:是用于描述函数渐进行为的数学符号

推导大O阶方法:

(1)用常数1取代运行时间中的所有加减常数

(2)只保留最高阶项

(3)如果最高项存在且不是1,则去除这个项目相乘的常数,得到的结果就是大O阶。

对于上面的例子来说:对结果影响最大的想是N^2,所以就只保留它。

4.常见的时间复杂度的计算

//实例一
void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

基本操作执行了2*N+10,用大O表示法推导,时间复杂度为O(N)

//实例二
void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

 基本操作执行了M+N次,时间复杂度为O(M+N),这里的M和N都不能省略。

//实例三
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

上面的例子体现了有些算法的时间复杂度存在最好、最坏和平均的情况。

在实际中一般情况关注的是算法的最坏运行情况,就像是对于自己做事有一个预期管理。那么上面的例子最好执行1次,最坏执行(N*(N+1))/2次。所以时间复杂度为O(N^2)。

//实例四
int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n-1;
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 return -1;
}

上面的基本操作最好是执行1次,最坏是执行log2^N次,所以时间复杂度是O(logN)

//实例五
long long Fac(size_t N)
{
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N;
}

函数递归了N次,每次基本操作都是O(1),所以时间复杂度为O(N)

//实例六
long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

求斐波那契的递归的操作次数其实就是等比数列求和,时间复杂度为O(N^2)。

5.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行中临时占用存储空间大小的量度。 

空间复杂度的计算同样使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显示申请的额外空间来确定。

6.常见的空间复杂度的计算

//实例一
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

 使用了常数个额外空间,空间复杂度是O(1)

//实例二

long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

上面的实例,动态开辟了N个额外空间,空间复杂度为O(n)

//实例三
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

上面的例子是递归,由于空间是可以重复利用的,所以开辟了N个栈帧,每个栈帧使用常数个空间,所以空间复杂度时O(n)

 今天分享就到这里,希望大家一起提高!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值