#需求:对top250进行requests爬取,并清洗数据后制作柱状图,折线图等 #定义函数。爬取top250的信息 #影片详情链接、图片链接、、影片概况和相关内容 from bs4 import BeautifulSoup import requests import re import openpyxl import time def get_data(): wb = openpyxl.Workbook() sheet = wb.active sheet.append(['中文标题', '英文标题', '发行时间', '电影评分', '评价人数','影片详细链接','图片链接','影片概况','导演名称']) wb.save('data.xlsx') for m in range(0,10): print(f'{m+1}页') nus=m*25 URL=f"https://movie.douban.com/top250?start={nus}&filter=" Headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; an-ES; rv:1.9.0.20) Gecko/9663-05-06 15:44:33 Firefox/3.8'} response = requests.get(url=URL, headers=Headers) if response.status_code!=200: print(f"爬取失败,状态码是{response.status_code}") else: response.encoding = 'utf-8' soup=BeautifulSoup(response.text,'html.parser') # 从文档树中提取信息 label_numbers=soup.select('#content>div>div.article>ol>li') for label_number in range(1,len(label_numbers)+1): a1234=f'#content > div > div.article > ol > li:nth-child({label_number}) ' #中文标题 label1=soup.select(a1234+'> div > div.info > div.hd > a > span:nth-child(1)') #英文标题 label2 = soup.select(a1234+ f'> div > div.info > div.hd > a > span:nth-child(2)') english_label=label2[0].text.replace("/", "").strip() #导演,主演,发行时间,发
对top250进行requests爬取,制作柱状图,折线图等
于 2024-06-04 00:28:24 首次发布
本文使用Python的requests库爬取了网站Top250的数据,然后通过数据处理和可视化库,如matplotlib,制作了柱状图和折线图,展示了排名变化趋势和各项指标的分布情况。
摘要由CSDN通过智能技术生成