对top250进行requests爬取,制作柱状图,折线图等

本文使用Python的requests库爬取了网站Top250的数据,然后通过数据处理和可视化库,如matplotlib,制作了柱状图和折线图,展示了排名变化趋势和各项指标的分布情况。
摘要由CSDN通过智能技术生成
#需求:对top250进行requests爬取,并清洗数据后制作柱状图,折线图等
#定义函数。爬取top250的信息
#影片详情链接、图片链接、、影片概况和相关内容
from bs4 import BeautifulSoup
import requests
import re
import openpyxl
import time
def get_data():
    wb = openpyxl.Workbook()
    sheet = wb.active
    sheet.append(['中文标题', '英文标题', '发行时间', '电影评分', '评价人数','影片详细链接','图片链接','影片概况','导演名称'])
    wb.save('data.xlsx')
    for m in range(0,10):
        print(f'{m+1}页')
        nus=m*25
        URL=f"https://movie.douban.com/top250?start={nus}&filter="
        Headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; an-ES; rv:1.9.0.20) Gecko/9663-05-06 15:44:33 Firefox/3.8'}
        response = requests.get(url=URL, headers=Headers)
        if response.status_code!=200:
            print(f"爬取失败,状态码是{response.status_code}")
        else:
            response.encoding = 'utf-8'
            soup=BeautifulSoup(response.text,'html.parser')
            # 从文档树中提取信息
            label_numbers=soup.select('#content>div>div.article>ol>li')
            for label_number in range(1,len(label_numbers)+1):
                a1234=f'#content > div > div.article > ol > li:nth-child({label_number}) '
                #中文标题
                label1=soup.select(a1234+'> div > div.info > div.hd > a > span:nth-child(1)')
                #英文标题
                label2 = soup.select(a1234+ f'> div > div.info > div.hd > a > span:nth-child(2)')
                english_label=label2[0].text.replace("/", "").strip()
                #导演,主演,发行时间,发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值