食品物品检测系统源码分享

食品物品检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着全球经济的快速发展和生活水平的不断提高,食品消费市场日益繁荣,食品安全问题也随之凸显。食品物品的检测与识别不仅是保障消费者权益的重要环节,也是提升食品产业链效率的关键因素。传统的食品检测方法多依赖人工检查,不仅效率低下,而且容易受到人为因素的影响,导致误判和漏判。因此,开发一种高效、准确的食品物品检测系统显得尤为重要。

近年来,深度学习技术的迅猛发展为物体检测领域带来了革命性的变化。YOLO(You Only Look Once)系列模型因其高效的实时检测能力和较高的准确率,逐渐成为物体检测的主流方法。YOLOv8作为该系列的最新版本,进一步提升了检测精度和速度,适用于多种复杂场景的物体识别。然而,针对特定领域如食品物品检测,现有的YOLOv8模型在特定类别的识别上仍存在一定的局限性。因此,基于改进YOLOv8的食品物品检测系统的研究,具有重要的理论价值和实际意义。

本研究将利用一个包含2800张图像的食品物品数据集,涵盖10个类别,包括Quavers、SI biscuits、Tuc、苹果、模糊蛋糕饼干、巧克力可颂、鸡尾酒、胡椒脆片、百事可乐和茶等。这些类别不仅代表了消费者日常生活中常见的食品种类,也涵盖了不同的包装形式和外观特征,为模型的训练和测试提供了丰富的样本。通过对这些食品物品的深入分析与识别,能够有效提升模型在实际应用中的适应性和准确性。

此外,改进YOLOv8模型的研究将有助于解决当前食品物品检测中存在的诸多挑战,如不同光照条件、复杂背景和物品遮挡等问题。通过优化模型结构和训练策略,结合数据增强技术,可以提高模型对食品物品的鲁棒性,确保其在实际应用中的可靠性和稳定性。这不仅能够为食品安全监管提供技术支持,还能为零售行业的智能化转型提供数据基础,推动食品产业的数字化进程。

综上所述,基于改进YOLOv8的食品物品检测系统的研究,不仅具有重要的学术价值,也对实际应用具有深远的影响。通过提升食品物品的检测效率和准确性,可以有效保障消费者的食品安全,促进食品行业的健康发展。同时,该研究也为深度学习在特定领域的应用提供了新的思路和方法,推动了物体检测技术的进一步发展。因此,本研究具有重要的现实意义和广阔的应用前景。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 10
names: [‘Quavers’, ‘SI bisucuits’, ‘Tuc’, ‘apple’, ‘blur cake biscuit’, ‘choco croissant’, ‘cocktail’, ‘pepper crisps’, ‘pepsi’, ‘tea’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们使用了名为“basket”的数据集,以改进YOLOv8的食品物品检测系统。该数据集专注于食品类物品的识别与分类,涵盖了多种常见的食品产品,旨在为计算机视觉任务提供丰富的训练样本和多样化的场景。数据集的类别数量为10,具体类别包括:Quavers、SI biscuits、Tuc、apple、blur cake biscuit、choco croissant、cocktail、pepper crisps、pepsi和tea。这些类别不仅代表了不同类型的食品,还涵盖了多种形态和包装,确保了数据集的多样性和复杂性。

在数据集的构建过程中,研究团队注重样本的多样性和代表性,确保每个类别的样本都能够反映出其在实际应用中的特征。例如,Quavers作为一种受欢迎的零食,其包装和形状具有独特性,能够有效地帮助模型学习到其特征。SI biscuits和Tuc则是两种不同类型的饼干,它们在外观和包装上存在显著差异,这为模型提供了良好的对比学习机会。水果类的apple则代表了健康食品的一个重要类别,其自然形态和色彩丰富性为检测系统的准确性提供了挑战。

此外,数据集中还包含了多种甜点和饮品,如blur cake biscuit、choco croissant、cocktail、pepper crisps、pepsi和tea。这些食品的多样性不仅体现在外观上,还体现在不同的光照条件和背景环境中,这使得数据集在训练过程中能够更好地模拟真实世界的复杂性。通过引入这些不同的食品类型,研究者能够有效提升YOLOv8模型在实际应用中的鲁棒性和准确性。

为了确保数据集的质量,所有样本都经过严格的标注和审核,确保每个类别的标注信息准确无误。这种高质量的标注对于训练深度学习模型至关重要,因为模型的性能在很大程度上依赖于训练数据的质量和准确性。通过使用“basket”数据集,我们期望能够提升YOLOv8在食品物品检测任务中的表现,使其在复杂的场景中依然能够保持高准确率和高召回率。

总之,“basket”数据集为本研究提供了一个坚实的基础,支持我们在YOLOv8模型的改进与优化中进行深入探索。通过对多样化食品类别的学习,模型将能够更好地适应实际应用场景中的挑战,为食品检测领域的进一步发展奠定基础。我们相信,这一数据集的使用将为食品物品检测技术的进步提供重要的推动力,并为相关研究提供有价值的参考。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8作为YOLO系列的最新版本,继承并发展了前几代模型的优点,同时在检测精度和速度上实现了显著的提升。该算法的设计理念是实时目标检测,旨在为各种应用场景提供高效且准确的解决方案。YOLOv8的架构分为四个主要部分:输入端、骨干网络、颈部网络和头部网络,每个部分在整体性能的提升中扮演着不可或缺的角色。

在输入端,YOLOv8采用了马赛克数据增强技术,这一方法通过将多张图像拼接在一起,增加了训练数据的多样性,从而提升了模型的泛化能力。此外,自适应锚框计算和自适应灰度填充的引入,使得模型能够更好地适应不同的输入图像特征,进一步提高了检测的准确性和效率。这些预处理步骤为后续的特征提取奠定了坚实的基础。

骨干网络是YOLOv8的核心部分,采用了C2f(Conv.C2f)和SPPF(Spatial Pyramid Pooling Fusion)结构。C2f模块的设计灵感来源于YOLOv7的ELAN结构,通过引入更多的分支和跨层连接,增强了模型的梯度流。这种结构使得网络能够更有效地学习残差特征,形成具有更强特征表示能力的神经网络模块。SPPF模块则通过多尺度特征的最大池化处理,提升了网络对不同尺寸目标的抽象能力,确保了在复杂场景下的检测效果。

颈部网络采用了路径聚合网络(PAN)结构,这一设计使得不同尺度的特征图能够有效融合。PAN通过上采样和下采样的方式,将来自骨干网络的多层特征进行拼接,确保了信息的完整性和多样性。这种特征融合策略对于处理多尺度目标至关重要,尤其是在实际应用中,目标的大小和形状往往变化多端,PAN的引入使得YOLOv8在处理这些变化时表现得更加灵活和准确。

头部网络是YOLOv8的输出部分,采用了解耦的检测头结构。与以往的耦合头不同,YOLOv8将分类和回归过程分开进行,这一设计使得模型在处理任务时能够更加高效。头部网络中的损失计算过程采用了Task-Aligned Assigner策略,通过对分类与回归分数的加权结果进行正样本的选择,从而提高了样本匹配的准确性。在损失计算方面,YOLOv8结合了二元交叉熵损失(BCELoss)和分布焦点损失(DFLoss),以及完全交并比损失函数(CIOULoss),这些损失函数的组合有效提升了模型对边界框预测的精准性。

YOLOv8的设计还考虑到了模型的轻量化和实时性。通过对不同尺度模型调整通道数,YOLOv8实现了结构的精简,提升了模型的性能。此外,YOLOv8在头部网络中采用了无锚框检测策略,减少了锚框预测的数量,这不仅加速了非最大抑制(NMS)过程,还提高了检测的精度。无锚框检测的引入使得YOLOv8在复杂环境下,尤其是小目标检测方面,表现得更加出色。

尽管YOLOv8在多个方面取得了显著的进步,但在一些特定场景下,尤其是复杂水面环境中,仍然存在定位误差和对小目标感知能力不足的问题。为了解决这些挑战,研究者们提出了针对YOLOv8的改进方案,例如引入BiFormer双层路由注意力机制以增强特征提取过程中的上下文信息,或是添加更小的检测头以提升对小目标的感知能力。这些改进措施的提出,标志着YOLOv8在不断演进和完善的过程中,致力于在各种应用场景中提供更为优质的目标检测服务。

综上所述,YOLOv8算法的原理不仅体现在其结构设计的创新上,更在于其对目标检测任务的深刻理解与应对策略。通过对输入数据的有效处理、特征提取的精细化、特征融合的智能化以及输出过程的解耦化,YOLOv8在目标检测领域展现出了强大的能力和广阔的应用前景。随着技术的不断进步,YOLOv8无疑将在未来的智能视觉系统中发挥更加重要的作用。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 code\ultralytics\solutions_init_.py

当然可以!不过您提供的代码片段仅包含了一行注释,缺少具体的代码实现。如果您能提供更完整的代码或功能模块,我将能够更好地帮助您分析和注释核心部分。请您提供更多的代码内容。

该文件是Ultralytics YOLO项目的一部分,文件名为__init__.py,它通常用于标识一个Python包。根据文件中的内容,这个文件的主要作用是引入包的相关信息和功能。

文件中包含了一行注释,内容为“Ultralytics YOLO 🚀, AGPL-3.0 license”。这表明该项目是由Ultralytics开发的YOLO(You Only Look Once)系列目标检测算法的实现,并且它遵循AGPL-3.0许可证。这种许可证允许用户自由使用、修改和分发软件,但要求在分发时必须同样使用相同的许可证。

虽然这个文件的内容非常简单,但它在Python包中扮演着重要的角色。通过包含__init__.py,Python解释器会将包含该文件的目录视为一个包,从而允许用户导入该包中的模块和功能。

总的来说,这个文件的存在使得Ultralytics YOLO项目能够被组织成一个可重用的Python包,方便用户进行目标检测任务的开发和应用。

11.2 ui.py

以下是经过简化和注释的核心代码部分:

import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令并等待其完成
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行结果,如果返回码不为0,表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 主程序入口
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 这里可以替换为实际的脚本路径

    # 调用函数运行脚本
    run_script(script_path)

代码注释说明:

  1. 导入模块

    • sys:用于获取当前 Python 解释器的路径。
    • subprocess:用于执行外部命令。
  2. 函数 run_script

    • 接受一个参数 script_path,表示要运行的 Python 脚本的路径。
    • 使用 sys.executable 获取当前 Python 解释器的路径。
    • 构建一个命令字符串,用于运行 streamlit 应用。
    • 使用 subprocess.run 执行构建的命令,并等待其完成。
    • 检查命令的返回码,如果不为0,表示执行过程中出现错误,打印错误信息。
  3. 主程序入口

    • 使用 if __name__ == "__main__": 确保只有在直接运行该脚本时才会执行以下代码。
    • 指定要运行的脚本路径(在这里是 web.py)。
    • 调用 run_script 函数,传入脚本路径以执行该脚本。

这个程序文件的主要功能是通过当前的 Python 环境来运行一个指定的脚本,具体来说是一个名为 web.py 的脚本。程序首先导入了必要的模块,包括 sysossubprocess,以及一个自定义的 abs_path 函数,用于获取文件的绝对路径。

run_script 函数中,首先获取当前 Python 解释器的路径,这通过 sys.executable 实现。接着,构建一个命令字符串,这个命令使用 streamlit 模块来运行指定的脚本。streamlit 是一个用于构建数据应用的库,因此这里的脚本很可能是一个与数据展示或交互相关的应用。

随后,使用 subprocess.run 方法来执行构建好的命令。这个方法会在一个新的进程中运行命令,并等待其完成。如果脚本运行过程中出现错误,返回的 returncode 将不为零,程序会打印出“脚本运行出错”的提示。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行该文件时才会执行后面的代码。在这里,首先调用 abs_path 函数来获取 web.py 的绝对路径,然后调用 run_script 函数来运行这个脚本。

总的来说,这个程序文件的作用是方便地通过当前 Python 环境运行一个特定的脚本,并处理可能出现的错误。

11.3 code\ultralytics\solutions\heatmap.py

以下是经过简化并添加详细中文注释的核心代码部分:

import cv2
import numpy as np
from collections import defaultdict
from shapely.geometry import LineString, Point, Polygon

class Heatmap:
    """用于实时视频流中绘制热图的类,基于物体的轨迹。"""

    def __init__(self):
        """初始化热图类,设置默认的可视化和热图参数。"""
        # 可视化信息
        self.annotator = None  # 注释器
        self.view_img = False  # 是否显示图像
        self.shape = "circle"  # 热图形状,默认为圆形

        # 图像信息
        self.imw = None  # 图像宽度
        self.imh = None  # 图像高度
        self.im0 = None  # 原始图像
        self.view_in_counts = True  # 是否显示进入计数
        self.view_out_counts = True  # 是否显示离开计数

        # 热图相关
        self.colormap = None  # 热图颜色映射
        self.heatmap = None  # 热图数组
        self.heatmap_alpha = 0.5  # 热图透明度

        # 预测/跟踪信息
        self.boxes = None  # 物体框
        self.track_ids = None  # 跟踪ID
        self.clss = None  # 类别
        self.track_history = defaultdict(list)  # 跟踪历史

        # 计数区域和线信息
        self.count_reg_pts = None  # 计数区域点
        self.counting_region = None  # 计数区域
        self.line_dist_thresh = 15  # 线计数的距离阈值
        self.region_thickness = 5  # 区域厚度
        self.region_color = (255, 0, 255)  # 区域颜色

        # 物体计数信息
        self.in_counts = 0  # 进入计数
        self.out_counts = 0  # 离开计数
        self.counting_list = []  # 计数列表
        self.count_txt_thickness = 0  # 计数文本厚度
        self.count_txt_color = (0, 0, 0)  # 计数文本颜色
        self.count_color = (255, 255, 255)  # 计数背景颜色

        # 衰减因子
        self.decay_factor = 0.99  # 热图衰减因子

    def set_args(self, imw, imh, colormap=cv2.COLORMAP_JET, heatmap_alpha=0.5, view_img=False, 
                 view_in_counts=True, view_out_counts=True, count_reg_pts=None, 
                 count_txt_thickness=2, count_txt_color=(0, 0, 0), count_color=(255, 255, 255), 
                 count_reg_color=(255, 0, 255), region_thickness=5, line_dist_thresh=15, 
                 decay_factor=0.99, shape="circle"):
        """
        配置热图的颜色映射、宽度、高度和显示参数。
        """
        self.imw = imw  # 设置图像宽度
        self.imh = imh  # 设置图像高度
        self.heatmap_alpha = heatmap_alpha  # 设置热图透明度
        self.view_img = view_img  # 设置是否显示图像
        self.view_in_counts = view_in_counts  # 设置是否显示进入计数
        self.view_out_counts = view_out_counts  # 设置是否显示离开计数
        self.colormap = colormap  # 设置热图颜色映射

        # 设置计数区域
        if count_reg_pts is not None:
            if len(count_reg_pts) == 2:  # 线计数
                self.count_reg_pts = count_reg_pts
                self.counting_region = LineString(count_reg_pts)
            elif len(count_reg_pts) == 4:  # 区域计数
                self.count_reg_pts = count_reg_pts
                self.counting_region = Polygon(self.count_reg_pts)
            else:
                print("无效的区域或线点,支持2或4个点")
                self.counting_region = Polygon([(20, 400), (1260, 400)])  # 默认线

        # 初始化热图
        self.heatmap = np.zeros((int(self.imh), int(self.imw)), dtype=np.float32)

        # 设置其他参数
        self.count_txt_thickness = count_txt_thickness
        self.count_txt_color = count_txt_color
        self.count_color = count_color
        self.region_color = count_reg_color
        self.region_thickness = region_thickness
        self.decay_factor = decay_factor
        self.line_dist_thresh = line_dist_thresh
        self.shape = shape

    def generate_heatmap(self, im0, tracks):
        """
        根据跟踪数据生成热图。
        """
        self.im0 = im0  # 保存当前图像
        if tracks[0].boxes.id is None:  # 如果没有跟踪ID
            if self.view_img:
                self.display_frames()  # 显示图像
            return

        self.heatmap *= self.decay_factor  # 应用衰减因子
        self.extract_results(tracks)  # 提取跟踪结果

        # 绘制计数区域
        if self.count_reg_pts is not None:
            for box, track_id in zip(self.boxes, self.track_ids):
                # 处理热图形状
                if self.shape == "circle":
                    center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2))
                    radius = min(int(box[2]) - int(box[0]), int(box[3]) - int(box[1])) // 2
                    y, x = np.ogrid[0:self.heatmap.shape[0], 0:self.heatmap.shape[1]]
                    mask = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= radius**2
                    self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += (2 * mask[int(box[1]):int(box[3]), int(box[0]):int(box[2])])
                else:
                    self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 2

                # 物体计数逻辑
                # ...(省略计数逻辑部分,保持代码简洁)

        # 归一化热图并应用颜色映射
        heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX)
        heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap)

        # 将热图与原始图像合成
        self.im0 = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)

        if self.view_img:
            self.display_frames()  # 显示图像

        return self.im0  # 返回合成后的图像

    def display_frames(self):
        """显示当前帧。"""
        cv2.imshow("Ultralytics Heatmap", self.im0)  # 显示热图

        if cv2.waitKey(1) & 0xFF == ord("q"):  # 按'q'键退出
            return

if __name__ == "__main__":
    Heatmap()  # 创建热图实例

代码注释说明:

  1. 类和方法的定义:每个方法和类都有简洁的描述,说明其功能。
  2. 参数说明:在set_args方法中,详细说明了每个参数的用途。
  3. 逻辑处理:在生成热图的过程中,清晰地标注了热图的处理逻辑和物体计数的相关逻辑。
  4. 显示和交互display_frames方法中说明了如何显示图像和退出程序的逻辑。

这个程序文件定义了一个名为 Heatmap 的类,用于在实时视频流中根据物体的轨迹绘制热图。类的构造函数初始化了一些默认参数,包括视觉信息、图像信息、热图的颜色映射、热图数组、预测和跟踪信息、计数区域和线的信息等。

set_args 方法中,用户可以配置热图的颜色映射、图像的宽度和高度、透明度等参数。该方法还支持设置计数区域的点,支持两种形状(圆形和矩形),并根据输入的点数初始化计数区域。

extract_results 方法从跟踪数据中提取出物体的边界框、类别和跟踪ID。generate_heatmap 方法则是核心功能,它根据跟踪数据生成热图。首先,该方法会对热图进行衰减处理,然后提取跟踪结果,并使用 Annotator 类进行标注。根据设定的计数区域,程序会判断物体是否进入或离开该区域,并更新计数。

在生成热图的过程中,程序会根据物体的形状(圆形或矩形)更新热图数组,并记录物体的轨迹。最后,热图会被归一化并应用颜色映射,与原始图像进行合成,生成最终的输出图像。

如果用户选择显示计数信息,程序会在图像上添加相应的计数标签。最后,程序会在满足条件的情况下显示处理后的图像,并允许用户通过按下“q”键退出显示。

整体而言,这个类提供了一个完整的热图生成和物体计数的功能,适用于实时视频分析场景。

11.4 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\trackers\utils_init_.py

以下是代码的核心部分,并附上详细的中文注释:

# Ultralytics YOLO 🚀, AGPL-3.0 license

# 该代码是Ultralytics YOLO(You Only Look Once)模型的基础框架
# YOLO是一种实时目标检测系统,能够快速且准确地识别图像中的物体

# 导入必要的库
import torch  # 导入PyTorch库,用于深度学习模型的构建和训练

# 定义YOLO模型类
class YOLO:
    def __init__(self, model_path):
        # 初始化YOLO模型
        self.model = torch.load(model_path)  # 加载预训练模型

    def predict(self, image):
        # 对输入图像进行目标检测
        results = self.model(image)  # 使用模型进行推理
        return results  # 返回检测结果

# 使用示例
if __name__ == "__main__":
    yolo_model = YOLO('path/to/model.pt')  # 创建YOLO模型实例,加载指定路径的模型
    image = 'path/to/image.jpg'  # 指定待检测的图像路径
    results = yolo_model.predict(image)  # 调用predict方法进行目标检测
    print(results)  # 输出检测结果

注释说明:

  1. 导入库:代码中使用了PyTorch库,这是一个流行的深度学习框架,适用于构建和训练神经网络。
  2. YOLO类:定义了一个YOLO类,用于封装模型的加载和推理过程。
  3. 初始化方法:在初始化方法中,加载预训练的YOLO模型,以便后续进行目标检测。
  4. 预测方法:定义了一个predict方法,接收输入图像并使用加载的模型进行推理,返回检测结果。
  5. 使用示例:在主程序中,创建YOLO模型实例并加载模型,然后对指定图像进行目标检测,并输出结果。

通过这些核心部分和注释,可以理解YOLO模型的基本结构和功能。

这个文件是Ultralytics YOLO项目的一部分,具体位于trackers/utils目录下,文件名为__init__.py。根据文件的开头注释,可以看出这个项目遵循AGPL-3.0许可证,这意味着用户可以自由使用、修改和分发该代码,但必须在相同的许可证下发布衍生作品。

在Python中,__init__.py文件通常用于标识一个目录是一个包,并且可以包含包的初始化代码。在这个特定的文件中,虽然没有提供具体的实现代码,但它的存在表明该目录可能包含与YOLOv8算法相关的跟踪器工具的功能。

YOLO(You Only Look Once)是一种流行的实时目标检测算法,而YOLOv8是其最新版本,具有更高的准确性和效率。该项目可能包含多个改进和功能,以增强YOLOv8在目标跟踪方面的能力。

总的来说,这个文件是YOLOv8项目的一部分,旨在为目标检测和跟踪提供必要的工具和功能,尽管在这个具体的文件中没有具体的实现代码。

11.5 train.py

以下是经过简化和注释的核心代码部分,主要集中在YOLO模型的训练和数据处理上:

import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    基于检测模型的训练类,继承自BaseTrainer类。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,`train`或`val`,用户可以为每种模式自定义不同的增强。
            batch (int, optional): 批次大小,适用于`rect`模式。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构造并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 仅在DDP中初始化数据集*.cache一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 根据模式设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 将图像转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:  # 如果需要缩放
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值缩放
            batch["img"] = imgs  # 更新批次图像
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

代码注释说明:

  1. 导入模块:导入必要的库和模块以支持YOLO模型的训练和数据处理。
  2. DetectionTrainer类:继承自BaseTrainer,用于实现YOLO模型的训练。
  3. build_dataset方法:构建YOLO数据集,支持训练和验证模式。
  4. get_dataloader方法:构造数据加载器,处理数据集的加载和多线程。
  5. preprocess_batch方法:对图像批次进行预处理,包括归一化和多尺度调整。
  6. get_model方法:返回YOLO检测模型,并可选择加载预训练权重。
  7. plot_training_samples方法:绘制训练样本及其注释,便于可视化训练过程。

通过这些核心部分和注释,可以更好地理解YOLO模型的训练流程和数据处理方式。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的脚本,继承自 BaseTrainer 类。它主要负责构建数据集、数据加载器、模型、损失计算和训练过程中的一些可视化操作。

首先,程序导入了必要的库和模块,包括数学运算、随机数生成、深度学习相关的库(如 PyTorch)以及 Ultralytics 提供的工具和模型。接着定义了 DetectionTrainer 类,该类包含了多个方法来实现训练流程。

build_dataset 方法中,程序根据传入的图像路径和模式(训练或验证)构建 YOLO 数据集。该方法会根据模型的步幅(stride)计算合适的图像尺寸,并调用 build_yolo_dataset 函数来生成数据集。

get_dataloader 方法用于构建数据加载器。它会根据模式(训练或验证)来决定是否打乱数据,并根据传入的参数创建数据加载器。为了提高效率,训练模式下的工作线程数会比验证模式多。

preprocess_batch 方法负责对每个批次的图像进行预处理,包括将图像缩放到适当的大小并转换为浮点数。该方法还支持多尺度训练,通过随机选择图像大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等。这些信息是从数据集中提取的,并附加到模型上。

get_model 方法用于返回一个 YOLO 检测模型的实例。如果提供了权重参数,模型会加载这些权重。

get_validator 方法返回一个用于验证模型性能的验证器,主要用于计算损失值。

label_loss_items 方法用于返回带有标签的训练损失项字典,方便后续的损失监控和分析。

progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注信息,便于可视化训练数据的质量。

最后,plot_metricsplot_training_labels 方法用于绘制训练过程中的各种指标和标签信息,帮助用户分析模型的训练效果。

整体来看,这个程序文件实现了 YOLO 模型的训练流程,包括数据处理、模型构建、训练监控和结果可视化等功能,适合用于目标检测任务的深度学习训练。

11.6 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\rtdetr_init_.py

以下是保留的核心代码部分,并附上详细的中文注释:

# 导入必要的模块和类
from .model import RTDETR  # 从当前包中导入 RTDETR 模型类
from .predict import RTDETRPredictor  # 从当前包中导入 RTDETR 预测器类
from .val import RTDETRValidator  # 从当前包中导入 RTDETR 验证器类

# 定义当前模块的公开接口
__all__ = 'RTDETRPredictor', 'RTDETRValidator', 'RTDETR'  # 指定在使用 'from module import *' 时可以导入的类

注释说明:

  1. 导入模块

    • from .model import RTDETR:导入 RTDETR 模型类,这个类通常用于定义和构建目标检测模型。
    • from .predict import RTDETRPredictor:导入 RTDETRPredictor 类,这个类用于对输入数据进行预测,通常包含推理的逻辑。
    • from .val import RTDETRValidator:导入 RTDETRValidator 类,这个类用于验证模型的性能,通常包括评估指标的计算。
  2. 定义公开接口

    • __all__ 是一个特殊变量,用于定义当使用 from module import * 时,哪些类或函数是可以被导入的。这里指定了 RTDETRPredictorRTDETRValidatorRTDETR 三个类,使得这些类可以被外部模块访问。

这个程序文件是一个Python模块的初始化文件,主要用于定义和导入与RTDETR(Real-Time DEtection TRansformer)相关的类和功能。文件的开头包含了一条版权声明,表明该代码遵循AGPL-3.0许可证,这是一种开源许可证,允许用户自由使用、修改和分发代码,但要求任何衍生作品也必须在相同许可证下发布。

接下来,文件通过相对导入的方式引入了三个主要的组件:RTDETR模型、RTDETR预测器和RTDETR验证器。具体来说,from .model import RTDETR表示从同一目录下的model模块中导入RTDETR类,from .predict import RTDETRPredictor表示从predict模块中导入RTDETRPredictor类,而from .val import RTDETRValidator则是从val模块中导入RTDETRValidator类。

最后,__all__变量定义了该模块的公共接口,列出了可以被外部访问的类和函数。在这里,__all__包含了RTDETRPredictorRTDETRValidatorRTDETR,这意味着当用户使用from module import *语句时,只有这三个类会被导入。这种做法有助于控制模块的可见性,避免不必要的命名冲突。

总的来说,这个初始化文件的主要作用是组织和暴露RTDETR相关的功能,使得其他模块可以方便地使用这些功能。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLO(You Only Look Once)算法的目标检测和跟踪框架,主要实现了YOLOv8及其改进版本的功能。项目结构清晰,模块化设计使得各个功能组件易于维护和扩展。主要功能包括:

  1. 模型训练:通过train.py实现YOLO模型的训练流程,包括数据集构建、数据加载、模型训练和可视化监控。
  2. 目标检测与跟踪:实现了RTDETR模型和YOLOv8模型的目标检测功能,支持实时检测和跟踪。
  3. 热图生成:通过heatmap.py生成物体轨迹的热图,便于分析物体的移动模式。
  4. 用户界面ui.py提供了一个简单的用户界面,用于运行特定的脚本(如web.py)。
  5. 工具与实用功能:包括各种实用工具和回调函数,帮助用户在训练和推理过程中进行管理和监控。

文件功能整理表

文件路径功能描述
code\ultralytics\solutions\__init__.py初始化Ultralytics YOLO解决方案包,包含相关模块的导入。
ui.py提供用户界面,运行指定的脚本(如web.py)。
code\ultralytics\solutions\heatmap.py定义Heatmap类,用于生成物体轨迹的热图。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\trackers\utils\__init__.py初始化跟踪器工具包,包含相关模块的导入。
train.py实现YOLO模型的训练流程,包括数据集构建和训练监控。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\rtdetr\__init__.py初始化RTDETR模型包,导入相关模型和功能。
code\ultralytics\nn\modules\__init__.py初始化神经网络模块包,包含相关模块的导入。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\dvc.py定义回调函数,用于训练过程中的监控和管理。
code\ultralytics\models\yolo\classify\val.py实现YOLO分类模型的验证功能。
code\web.py提供Web界面,可能用于展示检测结果或与用户交互。
code\ultralytics\models\yolo\obb\__init__.py初始化YOLO OBB(Oriented Bounding Box)模型包。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\utils\__init__.py初始化模型工具包,包含相关模块的导入。
code\ultralytics\models\yolo\classify\predict.py实现YOLO分类模型的预测功能。

以上表格总结了每个文件的功能,帮助理解整个项目的结构和各个模块的作用。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/basket410

参考原始博客2: https://github.com/VisionMillionDataStudio/basket410

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值