丁烷检测检测系统源码分享
[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
1.研究背景与意义
项目参考AAAI Association for the Advancement of Artificial Intelligence
项目来源AACV Association for the Advancement of Computer Vision
研究背景与意义
丁烷作为一种重要的烃类气体,广泛应用于工业、家庭和交通等多个领域。其具有良好的燃烧性能和经济性,然而,丁烷的泄漏和不当使用也可能引发严重的安全隐患,如火灾、爆炸等。因此,及时、准确地检测丁烷的存在对于保障人们的生命财产安全具有重要意义。近年来,随着计算机视觉和深度学习技术的迅猛发展,基于图像处理的气体检测系统逐渐成为研究的热点。其中,YOLO(You Only Look Once)系列模型因其高效的实时检测能力而受到广泛关注。YOLOv8作为该系列的最新版本,具备更强的特征提取能力和更快的推理速度,为丁烷检测提供了新的技术路径。
在丁烷检测的研究中,数据集的构建是一个至关重要的环节。本研究所使用的丁烷数据集包含2300张图像,涵盖了丁烷这一类别的多样性。这些图像不仅包括了不同环境下的丁烷容器、管道和泄漏场景,还考虑了不同光照、角度和背景的变化,确保了模型训练的全面性和有效性。通过对这些图像的标注和分类,研究者能够训练出更为精准的检测模型,提升丁烷检测的准确率和可靠性。
改进YOLOv8模型的研究不仅是对现有技术的延续,更是对其在特定应用场景下的优化。通过对YOLOv8模型的改进,可以在保证检测速度的同时,提升对丁烷的检测精度。例如,可以通过引入注意力机制、数据增强技术以及优化损失函数等手段,增强模型对丁烷特征的敏感性,从而提高其在复杂环境下的检测能力。此外,改进后的模型还可以通过迁移学习等方式,利用已有的相关数据集进行预训练,进一步提升模型的泛化能力。
本研究的意义不仅在于技术层面的创新,更在于其实际应用价值。随着城市化进程的加快和工业化水平的提高,丁烷的使用频率不断增加,相关的安全隐患也随之加剧。因此,构建一个高效、准确的丁烷检测系统,对于保障公共安全、减少事故发生具有重要的现实意义。通过改进YOLOv8模型,我们期望能够为丁烷的实时监测提供一种新的解决方案,为相关行业的安全管理提供技术支持。
综上所述,基于改进YOLOv8的丁烷检测系统的研究,不仅具有重要的学术价值,也为实际应用提供了切实可行的技术方案。随着研究的深入,我们期待能够为丁烷检测领域带来新的突破,为保障人们的安全贡献一份力量。
2.图片演示
注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)
(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。
(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。
(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。
(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。
另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。
3.视频演示
4.数据集信息展示
4.1 本项目数据集详细数据(类别数&类别名)
nc: 1
names: [‘butane’]
4.2 本项目数据集信息介绍
数据集信息展示
在本研究中,我们采用了名为“butane”的数据集,以训练和改进YOLOv8模型,旨在提升丁烷检测系统的性能和准确性。该数据集专注于丁烷这一特定类别,具有单一类别的特征,便于模型的专注训练和优化。数据集的类别数量为1,类别列表中仅包含“butane”这一项,充分体现了数据集的针对性和专业性。
丁烷是一种广泛应用于燃料和化工领域的烃类物质,其检测和监测在安全管理和环境保护中具有重要意义。随着工业化进程的加快,丁烷的使用频率不断增加,随之而来的安全隐患也日益突出。因此,构建一个高效的丁烷检测系统显得尤为重要。为此,我们选择了YOLOv8这一先进的目标检测模型,因其在实时检测和高准确率方面的优势,使其成为本研究的理想选择。
“butane”数据集的构建过程经过精心设计,确保数据的多样性和代表性。数据集中包含了多种场景下的丁烷图像,这些图像涵盖了不同的环境条件、光照变化以及丁烷容器的不同外观。这种多样性不仅增强了模型的泛化能力,还提高了其在实际应用中的适应性。通过对丁烷的多角度、多场景的图像采集,数据集为YOLOv8模型提供了丰富的训练样本,助力模型在各种情况下的准确识别。
在数据集的标注过程中,我们采用了严格的标注标准,确保每一张图像中的丁烷目标都被准确标识。这一过程不仅包括丁烷容器的识别,还涉及到背景环境的处理,以避免模型在训练过程中受到干扰。通过高质量的标注,数据集为YOLOv8模型的训练提供了坚实的基础,使其能够有效学习到丁烷的特征和模式。
此外,为了进一步提升模型的性能,我们在数据集的使用过程中进行了数据增强处理。这一过程包括对图像的旋转、缩放、裁剪和颜色调整等操作,旨在增加数据集的多样性,提升模型的鲁棒性。通过这种方式,我们能够模拟出更多的实际应用场景,从而提高模型在真实环境中的表现。
在模型训练阶段,我们将“butane”数据集与YOLOv8模型相结合,进行了一系列实验和调优。通过不断迭代训练和验证,我们逐步优化了模型的参数设置,提升了其在丁烷检测任务中的准确率和召回率。最终,我们期望通过这一研究,不仅能够实现对丁烷的高效检测,还能为相关领域的安全管理提供有力支持。
综上所述,“butane”数据集为本研究提供了坚实的基础,凭借其专一性和高质量的标注,助力YOLOv8模型在丁烷检测任务中的成功应用。我们相信,通过不断的研究和优化,丁烷检测系统将能够在实际应用中发挥重要作用,为安全生产和环境保护贡献力量。
5.全套项目环境部署视频教程(零基础手把手教学)
5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)
6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)
6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)
7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)
由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:
9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)
图9.1.系统支持检测结果表格显示
图9.2.系统支持置信度和IOU阈值手动调节
图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)
图9.4.系统支持摄像头实时识别
图9.5.系统支持图片识别
图9.6.系统支持视频识别
图9.7.系统支持识别结果文件自动保存
图9.8.系统支持Excel导出检测结果数据
10.原始YOLOV8算法原理
原始YOLOv8算法原理
YOLOv8算法是目标检测领域的一项重要进展,继承了YOLO系列的传统,并在此基础上进行了多项创新与改进。作为一种一阶段目标检测算法,YOLOv8将目标检测任务转化为回归问题,通过一个统一的神经网络模型同时预测目标的位置和类别。这种方法的核心在于其高效性和实时性,使得YOLOv8在实际应用中能够快速响应并提供准确的检测结果。
YOLOv8的网络结构由三个主要部分组成:Backbone、Neck和Head。Backbone部分负责特征提取,Neck部分则用于特征融合,而Head部分则执行最终的目标检测和分类任务。具体而言,Backbone采用了一系列卷积和反卷积层,结合残差连接和瓶颈结构,以减少网络的复杂性并提升性能。YOLOv8引入了C2模块作为基本构成单元,通过5个CBS模块、4个C2f模块和1个快速空间金字塔池化(SPPF)模块的组合,形成了高效的特征提取机制。
在特征融合方面,Neck部分采用了多尺度特征融合技术,利用来自Backbone不同阶段的特征图进行融合,以便更好地捕捉不同尺度目标的信息。这种融合策略显著提高了目标检测的性能和鲁棒性,使得YOLOv8能够在复杂场景中有效识别各种尺寸的目标。
Head部分负责最终的目标检测和分类任务。YOLOv8的检测头设计为解耦结构,将分类和定位任务分为两个独立的分支。通过这种解耦,YOLOv8能够更专注于每个任务,从而解决复杂场景下定位不准及分类错误的问题。检测头中包含一系列卷积层和反卷积层,用于生成检测结果,确保网络能够在不同尺寸的信息下有效检测目标。
YOLOv8在数据预处理方面延续了YOLOv5的策略,采用了马赛克增强、混合增强、空间扰动和颜色扰动等多种增强手段,以提高模型的鲁棒性和泛化能力。此外,YOLOv8在骨干网络结构上也做出了改进,原有的C3模块被替换为新的C2f模块,后者引入了更多的分支,丰富了梯度回传时的支流,进一步提升了特征提取的效率。
值得注意的是,YOLOv8在标签分配策略上进行了创新,采用了动态标签分配策略TOOD,而非依赖于固定的候选框。这一策略解决了正负样本匹配的多尺度分配问题,使得模型在训练过程中能够更灵活地适应不同的数据集。YOLOv8的损失函数设计也有所优化,分类损失采用了Varifocal Loss,回归损失则结合了CIoULoss与DFLLoss。这种设计使得模型在训练时能够更有效地关注高质量的正样本,同时降低负样本对损失的影响,从而提升整体检测性能。
YOLOv8的Anchor-free目标检测方法是一大亮点,它直接预测目标的位置和大小,避免了传统方法中预先定义锚点框的繁琐过程。这种基于回归的方式使得网络能够更快地聚焦于目标位置的邻近点,进而使得预测框更接近于实际边界框区域。这一创新不仅提升了检测精度,也显著简化了模型的设计和实现。
总的来说,YOLOv8算法在多个方面对前代YOLO模型进行了有效的改进,结合了高效的特征提取、灵活的特征融合和精准的目标检测策略,使得其在训练时间和检测精度上均得到了显著提升。得益于其轻量化的模型权重,YOLOv8能够在各种嵌入式设备上顺利部署,满足实时检测的需求。随着YOLOv8的推出,目标检测技术的应用场景将更加广泛,推动着智能视觉系统的进一步发展。
11.项目核心源码讲解(再也不用担心看不懂代码逻辑)
11.1 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\lsknet.py
以下是对代码的核心部分进行分析和详细注释的结果:
import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair as to_2tuple
from timm.layers import DropPath
from functools import partial
# 定义一个多层感知机(MLP)模块
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features # 输出特征数
hidden_features = hidden_features or in_features # 隐藏层特征数
# 定义两个1x1卷积层和一个深度卷积层
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.dwconv = DWConv(hidden_features) # 深度卷积
self.act = act_layer() # 激活函数
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop) # Dropout层
def forward(self, x):
x = self.fc1(x) # 通过第一个卷积层
x = self.dwconv(x) # 深度卷积
x = self.act(x) # 激活
x = self.drop(x) # Dropout
x = self.fc2(x) # 通过第二个卷积层
x = self.drop(x) # Dropout
return x
# 定义LSK块
class LSKblock(nn.Module):
def __init__(self, dim):
super().__init__()
# 定义多个卷积层
self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) # 深度卷积
self.conv_spatial = nn.Conv2d(dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3) # 空间卷积
self.conv1 = nn.Conv2d(dim, dim//2, 1) # 1x1卷积
self.conv2 = nn.Conv2d(dim, dim//2, 1) # 1x1卷积
self.conv_squeeze = nn.Conv2d(2, 2, 7, padding=3) # 压缩卷积
self.conv = nn.Conv2d(dim//2, dim, 1) # 1x1卷积
def forward(self, x):
attn1 = self.conv0(x) # 第一个注意力分支
attn2 = self.conv_spatial(attn1) # 第二个注意力分支
attn1 = self.conv1(attn1) # 处理第一个分支
attn2 = self.conv2(attn2) # 处理第二个分支
# 将两个分支的输出进行拼接
attn = torch.cat([attn1, attn2], dim=1)
avg_attn = torch.mean(attn, dim=1, keepdim=True) # 平均注意力
max_attn, _ = torch.max(attn, dim=1, keepdim=True) # 最大注意力
agg = torch.cat([avg_attn, max_attn], dim=1) # 拼接平均和最大注意力
sig = self.conv_squeeze(agg).sigmoid() # 压缩并激活
# 通过sigmoid加权两个分支
attn = attn1 * sig[:,0,:,:].unsqueeze(1) + attn2 * sig[:,1,:,:].unsqueeze(1)
attn = self.conv(attn) # 最后卷积
return x * attn # 输入与注意力相乘
# 定义注意力模块
class Attention(nn.Module):
def __init__(self, d_model):
super().__init__()
self.proj_1 = nn.Conv2d(d_model, d_model, 1) # 1x1卷积
self.activation = nn.GELU() # 激活函数
self.spatial_gating_unit = LSKblock(d_model) # LSK块
self.proj_2 = nn.Conv2d(d_model, d_model, 1) # 1x1卷积
def forward(self, x):
shorcut = x.clone() # 保存输入以进行残差连接
x = self.proj_1(x) # 通过第一个卷积
x = self.activation(x) # 激活
x = self.spatial_gating_unit(x) # 通过空间门控单元
x = self.proj_2(x) # 通过第二个卷积
x = x + shorcut # 残差连接
return x
# 定义整个LSK网络
class LSKNet(nn.Module):
def __init__(self, img_size=224, in_chans=3, embed_dims=[64, 128, 256, 512],
mlp_ratios=[8, 8, 4, 4], drop_rate=0., drop_path_rate=0.,
depths=[3, 4, 6, 3], num_stages=4):
super().__init__()
self.depths = depths
self.num_stages = num_stages
# 计算随机深度衰减规则
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
# 构建每个阶段的网络结构
for i in range(num_stages):
patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
patch_size=7 if i == 0 else 3,
stride=4 if i == 0 else 2,
in_chans=in_chans if i == 0 else embed_dims[i - 1],
embed_dim=embed_dims[i])
block = nn.ModuleList([Block(
dim=embed_dims[i], mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j])
for j in range(depths[i])])
norm = nn.LayerNorm(embed_dims[i]) # 归一化层
cur += depths[i]
setattr(self, f"patch_embed{i + 1}", patch_embed) # 动态设置属性
setattr(self, f"block{i + 1}", block)
setattr(self, f"norm{i + 1}", norm)
def forward(self, x):
B = x.shape[0] # 批大小
outs = []
for i in range(self.num_stages):
patch_embed = getattr(self, f"patch_embed{i + 1}")
block = getattr(self, f"block{i + 1}")
norm = getattr(self, f"norm{i + 1}")
x, H, W = patch_embed(x) # 嵌入图像块
for blk in block:
x = blk(x) # 通过每个块
x = norm(x) # 归一化
outs.append(x) # 保存输出
return outs # 返回所有阶段的输出
# 定义深度卷积模块
class DWConv(nn.Module):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) # 深度卷积
def forward(self, x):
x = self.dwconv(x) # 通过深度卷积
return x
# 定义模型的构建函数
def lsknet_t(weights=''):
model = LSKNet(embed_dims=[32, 64, 160, 256], depths=[3, 3, 5, 2])
if weights:
model.load_state_dict(torch.load(weights)['state_dict']) # 加载权重
return model
if __name__ == '__main__':
model = lsknet_t('lsk_t_backbone-2ef8a593.pth') # 创建模型实例
inputs = torch.randn((1, 3, 640, 640)) # 随机输入
for i in model(inputs):
print(i.size()) # 输出每个阶段的输出尺寸
代码分析总结:
- Mlp类:实现了一个多层感知机,包括两个1x1卷积层和一个深度卷积层,使用GELU激活函数和Dropout。
- LSKblock类:实现了一个注意力机制块,包含多个卷积层和注意力计算,结合了平均和最大池化的注意力。
- Attention类:实现了一个注意力模块,使用残差连接和激活函数。
- LSKNet类:构建了整个网络结构,包括多个阶段的嵌入、块和归一化层。
- DWConv类:实现了深度卷积,用于特征提取。
- lsknet_t函数:用于创建LSKNet模型并加载预训练权重。
这些核心部分构成了一个复杂的神经网络架构,适用于图像处理任务。
该文件实现了一个名为LSKNet的深度学习模型,主要用于图像处理任务。首先,文件导入了必要的库,包括PyTorch和一些特定的模块。接下来,定义了多个类,每个类实现了网络的不同部分。
首先,Mlp
类实现了一个多层感知机(MLP),包含两个卷积层和一个深度卷积层(DWConv),并使用GELU激活函数和Dropout进行正则化。其前向传播方法依次通过这些层处理输入数据。
LSKblock
类是一个特殊的块,包含多个卷积层和注意力机制。它首先通过深度卷积和空间卷积生成两个特征图,然后将这两个特征图进行处理,计算它们的平均值和最大值,最终通过一个卷积层生成注意力权重,并将其应用于输入特征图。
Attention
类实现了一个注意力机制,通过两个卷积层和一个LSKblock来增强特征表示。它在前向传播中将输入与经过注意力机制处理后的特征相加,以实现信息的融合。
Block
类结合了归一化、注意力机制和MLP,构成了模型的基本构建块。它使用Batch Normalization进行归一化,并通过DropPath实现随机深度,增加模型的鲁棒性。
OverlapPatchEmbed
类将输入图像分割成重叠的补丁,并通过卷积层将其嵌入到更高维度的空间中。它还包含Batch Normalization以增强特征表示。
LSKNet
类是整个网络的主体,包含多个阶段(num_stages),每个阶段由Patch Embedding、Block和归一化层组成。模型的前向传播方法依次通过每个阶段,提取特征并进行处理,最终返回多个输出。
DWConv
类实现了深度卷积,用于在Mlp
类中处理特征图。
update_weight
函数用于更新模型的权重,确保模型字典中的权重与加载的权重字典匹配。
lsknet_t
和lsknet_s
函数分别定义了两种不同配置的LSKNet模型,允许用户加载预训练权重。
最后,在主程序中,创建了一个LSKNet模型实例,并对一个随机生成的输入进行前向传播,打印出每个输出的尺寸。这一部分用于测试模型的构建和前向传播是否正常。整体上,该文件实现了一个灵活且强大的图像处理模型,适用于多种视觉任务。
11.2 code\ultralytics\models\yolo\detect\train.py
以下是代码中最核心的部分,并附上详细的中文注释:
class DetectionTrainer(BaseTrainer):
"""
DetectionTrainer类,继承自BaseTrainer类,用于基于检测模型的训练。
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
构建YOLO数据集。
参数:
img_path (str): 包含图像的文件夹路径。
mode (str): 模式,可以是'train'或'val',用户可以为每种模式自定义不同的数据增强。
batch (int, optional): 批次大小,仅在'rect'模式下使用。默认为None。
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""构造并返回数据加载器。"""
assert mode in ["train", "val"] # 确保模式有效
with torch_distributed_zero_first(rank): # 在分布式环境中仅初始化一次数据集
dataset = self.build_dataset(dataset_path, mode, batch_size)
shuffle = mode == "train" # 训练模式下打乱数据
if getattr(dataset, "rect", False) and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
shuffle = False
workers = self.args.workers if mode == "train" else self.args.workers * 2 # 根据模式设置工作线程数
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # 返回数据加载器
def preprocess_batch(self, batch):
"""对一批图像进行预处理,包括缩放和转换为浮点数。"""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 # 将图像转换为浮点数并归一化
if self.args.multi_scale: # 如果启用多尺度训练
imgs = batch["img"]
sz = (
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
// self.stride
* self.stride
) # 随机选择一个新的尺寸
sf = sz / max(imgs.shape[2:]) # 计算缩放因子
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # 计算新的形状
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) # 进行插值缩放
batch["img"] = imgs # 更新批次中的图像
return batch
def get_model(self, cfg=None, weights=None, verbose=True):
"""返回YOLO检测模型。"""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1) # 创建检测模型
if weights:
model.load(weights) # 加载权重
return model
def get_validator(self):
"""返回用于YOLO模型验证的DetectionValidator。"""
self.loss_names = "box_loss", "cls_loss", "dfl_loss" # 定义损失名称
return yolo.detect.DetectionValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
def plot_training_samples(self, batch, ni):
"""绘制带有注释的训练样本。"""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
代码说明:
- DetectionTrainer类:这是一个用于训练YOLO检测模型的类,继承自基础训练类
BaseTrainer
。 - build_dataset方法:构建YOLO数据集,接收图像路径、模式和批次大小作为参数。
- get_dataloader方法:构造数据加载器,支持训练和验证模式,并根据模式设置是否打乱数据。
- preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和可能的多尺度调整。
- get_model方法:返回一个YOLO检测模型,支持加载预训练权重。
- get_validator方法:返回一个用于模型验证的验证器。
- plot_training_samples方法:绘制训练样本及其对应的注释,便于可视化训练过程。
这个程序文件是Ultralytics YOLO(You Only Look Once)模型的训练模块,主要用于目标检测任务。它继承自一个基类BaseTrainer
,并提供了一系列方法来构建数据集、获取数据加载器、预处理图像、设置模型属性、获取模型、验证模型、记录损失、显示训练进度、绘制训练样本和绘制训练指标等。
首先,DetectionTrainer
类的构造函数没有显示,但可以推测它会初始化一些基本参数和模型。build_dataset
方法用于构建YOLO数据集,接收图像路径、模式(训练或验证)和批次大小作为参数。它通过调用build_yolo_dataset
函数来创建数据集,并根据模型的步幅(stride)进行处理。
get_dataloader
方法则用于构建数据加载器,确保在分布式训练时只初始化一次数据集,并根据模式选择是否打乱数据。它会根据训练或验证模式调整工作线程的数量,并返回构建好的数据加载器。
在图像预处理方面,preprocess_batch
方法会将图像转换为浮点数并进行归一化处理。如果启用了多尺度训练,它还会随机调整图像的大小,并通过双线性插值方法调整图像的尺寸,以适应模型的输入要求。
set_model_attributes
方法用于设置模型的属性,包括类别数量和类别名称,以便模型能够正确处理数据集中的不同类别。
get_model
方法用于返回一个YOLO检测模型实例,并可选择加载预训练权重。get_validator
方法则返回一个用于验证YOLO模型的验证器。
在损失记录方面,label_loss_items
方法会返回一个包含训练损失项的字典,方便后续的损失分析。progress_string
方法则返回一个格式化的字符串,用于显示训练进度,包括当前的epoch、GPU内存使用情况、损失值、实例数量和图像大小等信息。
此外,plot_training_samples
方法用于绘制训练样本及其标注,plot_metrics
方法用于从CSV文件中绘制训练指标,plot_training_labels
方法则创建一个带标签的训练图,以可视化训练数据的分布情况。
整体来看,这个文件提供了YOLO模型训练所需的基本功能,便于用户进行目标检测任务的训练和评估。
11.3 ui.py
以下是经过简化并添加详细中文注释的核心代码部分:
import sys
import subprocess
def run_script(script_path):
"""
使用当前 Python 环境运行指定的脚本。
Args:
script_path (str): 要运行的脚本路径
Returns:
None
"""
# 获取当前 Python 解释器的路径
python_path = sys.executable
# 构建运行命令,使用 streamlit 运行指定的脚本
command = f'"{python_path}" -m streamlit run "{script_path}"'
# 执行命令
result = subprocess.run(command, shell=True)
# 检查命令执行结果,如果返回码不为0,则表示出错
if result.returncode != 0:
print("脚本运行出错。")
# 实例化并运行应用
if __name__ == "__main__":
# 指定要运行的脚本路径
script_path = "web.py" # 假设脚本在当前目录下
# 调用函数运行脚本
run_script(script_path)
代码说明:
-
导入模块:
sys
:用于获取当前 Python 解释器的路径。subprocess
:用于执行外部命令。
-
定义
run_script
函数:- 该函数接受一个参数
script_path
,表示要运行的 Python 脚本的路径。 - 使用
sys.executable
获取当前 Python 解释器的路径。 - 构建一个命令字符串,使用
streamlit
运行指定的脚本。 - 使用
subprocess.run
执行命令,并检查返回码以判断脚本是否成功运行。
- 该函数接受一个参数
-
主程序入口:
- 当脚本作为主程序运行时,指定要运行的脚本路径(这里假设为
web.py
)。 - 调用
run_script
函数执行该脚本。
- 当脚本作为主程序运行时,指定要运行的脚本路径(这里假设为
这个程序文件名为 ui.py
,其主要功能是使用当前的 Python 环境来运行一个指定的脚本,具体是一个名为 web.py
的 Streamlit 应用。
首先,程序导入了几个必要的模块,包括 sys
、os
和 subprocess
。sys
模块用于访问与 Python 解释器相关的变量和函数,os
模块提供了与操作系统交互的功能,而 subprocess
模块则用于创建新进程、连接到它们的输入/输出/错误管道,并获取它们的返回码。
接下来,程序从 QtFusion.path
模块中导入了 abs_path
函数,这个函数的作用是获取给定路径的绝对路径。
在 run_script
函数中,程序接收一个参数 script_path
,这个参数是要运行的脚本的路径。函数首先获取当前 Python 解释器的路径,并将其存储在 python_path
变量中。然后,程序构建了一个命令字符串,该命令用于运行指定的脚本,具体是通过 streamlit run
命令来启动 Streamlit 应用。
接着,程序使用 subprocess.run
方法执行构建好的命令。这个方法会在新的 shell 中运行命令,并等待命令执行完成。如果命令的返回码不为零,表示脚本运行过程中出现了错误,程序会打印出“脚本运行出错。”的提示信息。
在文件的最后部分,程序通过 if __name__ == "__main__":
语句来确保只有在直接运行该脚本时才会执行后面的代码。在这里,程序调用 abs_path
函数来获取 web.py
的绝对路径,并将其存储在 script_path
变量中。最后,程序调用 run_script
函数,传入 script_path
,以启动指定的 Streamlit 应用。
总的来说,这个程序的主要目的是方便用户在当前 Python 环境中运行一个 Streamlit 应用,通过指定脚本路径来实现。
11.4 code\ultralytics\models\yolo\pose\predict.py
以下是代码中最核心的部分,并附上详细的中文注释:
from ultralytics.engine.results import Results # 导入结果处理类
from ultralytics.models.yolo.detect.predict import DetectionPredictor # 导入检测预测类
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops # 导入默认配置、日志记录器和操作工具
class PosePredictor(DetectionPredictor):
"""
PosePredictor类,扩展自DetectionPredictor类,用于基于姿态模型的预测。
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""初始化PosePredictor,设置任务为'pose'并记录使用'mps'作为设备的警告。"""
super().__init__(cfg, overrides, _callbacks) # 调用父类构造函数
self.args.task = "pose" # 设置任务类型为姿态预测
# 检查设备类型,如果是Apple MPS,记录警告信息
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
LOGGER.warning(
"WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
"See https://github.com/ultralytics/ultralytics/issues/4031."
)
def postprocess(self, preds, img, orig_imgs):
"""返回给定输入图像或图像列表的检测结果。"""
# 应用非极大值抑制,过滤掉低置信度的预测框
preds = ops.non_max_suppression(
preds,
self.args.conf, # 置信度阈值
self.args.iou, # IOU阈值
agnostic=self.args.agnostic_nms, # 是否对类别不敏感
max_det=self.args.max_det, # 最大检测框数量
classes=self.args.classes, # 选择的类别
nc=len(self.model.names), # 类别数量
)
# 如果输入图像不是列表,则将其转换为numpy数组
if not isinstance(orig_imgs, list):
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = [] # 初始化结果列表
for i, pred in enumerate(preds): # 遍历每个预测结果
orig_img = orig_imgs[i] # 获取原始图像
# 将预测框的坐标缩放到原始图像的尺寸
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round()
# 获取关键点预测,处理成指定形状
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
# 将关键点坐标缩放到原始图像的尺寸
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
img_path = self.batch[0][i] # 获取图像路径
# 将结果添加到结果列表中
results.append(
Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts)
)
return results # 返回处理后的结果
代码核心部分说明:
- PosePredictor类:该类用于姿态预测,继承自
DetectionPredictor
,可以利用YOLO模型进行姿态检测。 - 初始化方法:设置任务类型为姿态预测,并对使用特定设备(如Apple MPS)时发出警告。
- 后处理方法:对模型的预测结果进行处理,包括应用非极大值抑制、坐标缩放等,最终返回包含检测框和关键点的结果。
这个程序文件定义了一个名为 PosePredictor
的类,该类继承自 DetectionPredictor
,用于基于姿态模型进行预测。文件开头引入了一些必要的模块和类,包括 Results
、DetectionPredictor
和一些工具函数。
在 PosePredictor
类的构造函数 __init__
中,首先调用了父类的构造函数,并将任务类型设置为 “pose”。此外,如果设备类型是 “mps”(即苹果的金属性能计算),则会发出警告,建议使用 “cpu” 设备,因为在使用姿态模型时,“mps” 可能存在已知的bug。
类中还定义了一个 postprocess
方法,该方法用于处理给定输入图像或图像列表的检测结果。首先,使用非极大值抑制(NMS)对预测结果进行筛选,以去除冗余的检测框。接着,如果输入的原始图像不是列表形式,则将其转换为 NumPy 数组。
然后,程序遍历每个预测结果,获取对应的原始图像,并对预测框的坐标进行缩放,以适应原始图像的尺寸。接下来,提取关键点并进行相应的坐标缩放。最后,将处理后的结果存储在 results
列表中,并返回该列表。每个结果都包含原始图像、图像路径、模型名称、检测框和关键点信息。
这个类的设计使得用户可以方便地进行姿态检测,并能够处理和返回相关的检测结果。
11.5 train.py
以下是经过简化并添加详细中文注释的核心代码部分:
import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first
class DetectionTrainer(BaseTrainer):
"""
基于检测模型的训练类,继承自BaseTrainer类。
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
构建YOLO数据集。
参数:
img_path (str): 包含图像的文件夹路径。
mode (str): 模式,`train`表示训练模式,`val`表示验证模式。
batch (int, optional): 批次大小,适用于`rect`模式。默认为None。
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""构造并返回数据加载器。"""
assert mode in ["train", "val"]
with torch_distributed_zero_first(rank): # 在分布式环境中仅初始化一次数据集
dataset = self.build_dataset(dataset_path, mode, batch_size)
shuffle = mode == "train" # 训练模式下打乱数据
workers = self.args.workers if mode == "train" else self.args.workers * 2
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # 返回数据加载器
def preprocess_batch(self, batch):
"""对图像批次进行预处理,包括缩放和转换为浮点数。"""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 # 将图像转换为浮点数并归一化
if self.args.multi_scale: # 如果启用多尺度训练
imgs = batch["img"]
sz = (
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
// self.stride
* self.stride
) # 随机选择新的尺寸
sf = sz / max(imgs.shape[2:]) # 计算缩放因子
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # 计算新的形状
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) # 进行插值缩放
batch["img"] = imgs
return batch
def get_model(self, cfg=None, weights=None, verbose=True):
"""返回YOLO检测模型。"""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
if weights:
model.load(weights) # 加载预训练权重
return model
def plot_training_samples(self, batch, ni):
"""绘制带有注释的训练样本。"""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
代码核心部分说明:
DetectionTrainer
类:这是一个用于训练YOLO检测模型的类,继承自基础训练类BaseTrainer
。build_dataset
方法:根据给定的图像路径和模式构建YOLO数据集。get_dataloader
方法:构造数据加载器,处理训练和验证模式下的数据。preprocess_batch
方法:对输入的图像批次进行预处理,包括归一化和可选的多尺度调整。get_model
方法:创建并返回一个YOLO检测模型,支持加载预训练权重。plot_training_samples
方法:用于绘制训练样本及其注释,便于可视化训练过程中的数据。
以上是代码的核心部分和详细注释,旨在帮助理解YOLO模型的训练过程。
这个程序文件 train.py
是一个用于训练 YOLO(You Only Look Once)目标检测模型的实现,继承自 BaseTrainer
类。程序的主要功能是构建数据集、创建数据加载器、预处理图像批次、设置模型属性、获取模型、验证模型、记录损失、显示训练进度、绘制训练样本和指标等。
首先,程序导入了必要的库和模块,包括数学运算、随机数生成、深度学习框架 PyTorch 的神经网络模块、以及 Ultralytics 提供的各种工具和功能模块。接着定义了 DetectionTrainer
类,该类专门用于基于检测模型的训练。
在 build_dataset
方法中,程序构建了 YOLO 数据集,接受图像路径、模式(训练或验证)和批次大小作为参数。该方法使用 build_yolo_dataset
函数来创建数据集,并根据模型的步幅调整数据集的大小。
get_dataloader
方法则负责构建并返回数据加载器。它会根据训练或验证模式来决定是否打乱数据,并根据传入的参数配置数据加载器的工作线程数量。
preprocess_batch
方法用于对图像批次进行预处理,包括将图像缩放到合适的大小并转换为浮点数格式。这里还考虑了多尺度训练的情况,随机选择图像的大小并进行插值处理。
set_model_attributes
方法将数据集的类别数量和名称等属性附加到模型上,以便模型能够正确处理数据。
get_model
方法用于返回一个 YOLO 检测模型,并可以加载预训练的权重。
get_validator
方法返回一个用于模型验证的 DetectionValidator
实例,负责计算和记录损失。
label_loss_items
方法用于返回带有标签的训练损失项的字典,这对于目标检测任务是必要的。
progress_string
方法生成一个格式化的字符串,用于显示训练进度,包括当前的轮次、GPU 内存使用情况、损失值、实例数量和图像大小等信息。
plot_training_samples
方法用于绘制训练样本及其标注,方便可视化训练过程中的数据。
最后,plot_metrics
和 plot_training_labels
方法用于绘制训练过程中的指标和标签,分别从 CSV 文件中读取结果并生成可视化图像。
整体来看,这个程序文件提供了一个完整的训练框架,涵盖了数据处理、模型训练、验证和结果可视化等多个方面,适用于 YOLO 模型的训练任务。
11.6 code\ultralytics\models\yolo\model.py
# 导入所需的模块和类
from ultralytics.engine.model import Model
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel
class YOLO(Model):
"""YOLO (You Only Look Once) 目标检测模型的定义。"""
@property
def task_map(self):
"""将任务类型映射到相应的模型、训练器、验证器和预测器类。"""
return {
"classify": { # 分类任务
"model": ClassificationModel, # 使用的模型类
"trainer": yolo.classify.ClassificationTrainer, # 训练器类
"validator": yolo.classify.ClassificationValidator, # 验证器类
"predictor": yolo.classify.ClassificationPredictor, # 预测器类
},
"detect": { # 检测任务
"model": DetectionModel, # 使用的模型类
"trainer": yolo.detect.DetectionTrainer, # 训练器类
"validator": yolo.detect.DetectionValidator, # 验证器类
"predictor": yolo.detect.DetectionPredictor, # 预测器类
},
"segment": { # 分割任务
"model": SegmentationModel, # 使用的模型类
"trainer": yolo.segment.SegmentationTrainer, # 训练器类
"validator": yolo.segment.SegmentationValidator, # 验证器类
"predictor": yolo.segment.SegmentationPredictor, # 预测器类
},
"pose": { # 姿态估计任务
"model": PoseModel, # 使用的模型类
"trainer": yolo.pose.PoseTrainer, # 训练器类
"validator": yolo.pose.PoseValidator, # 验证器类
"predictor": yolo.pose.PosePredictor, # 预测器类
},
"obb": { # 方向边界框任务
"model": OBBModel, # 使用的模型类
"trainer": yolo.obb.OBBTrainer, # 训练器类
"validator": yolo.obb.OBBValidator, # 验证器类
"predictor": yolo.obb.OBBPredictor, # 预测器类
},
}
代码核心部分及注释说明:
-
导入模块:
- 导入了
Model
类和 YOLO 相关的模型、训练器、验证器和预测器。
- 导入了
-
YOLO 类:
- 继承自
Model
类,表示一个 YOLO 目标检测模型。
- 继承自
-
task_map 属性:
- 该属性返回一个字典,映射不同的任务类型(如分类、检测、分割、姿态估计和方向边界框)到相应的模型、训练器、验证器和预测器类。
- 每个任务都有其对应的模型和相关的处理类,便于在不同任务中复用相同的框架。
-
任务类型:
"classify"
:用于图像分类的任务。"detect"
:用于目标检测的任务。"segment"
:用于图像分割的任务。"pose"
:用于姿态估计的任务。"obb"
:用于方向边界框的任务。
通过这种结构,可以方便地扩展和管理不同的计算机视觉任务,保持代码的清晰和可维护性。
这个程序文件定义了一个名为 YOLO
的类,该类继承自 Model
类,主要用于实现 YOLO(You Only Look Once)目标检测模型。文件开头包含了版权信息,表明该代码遵循 AGPL-3.0 许可证。
在 YOLO
类中,有一个名为 task_map
的属性方法。这个方法返回一个字典,字典的键是不同的任务类型(如分类、检测、分割、姿态估计和方向边界框),每个键对应的值又是一个字典,包含了与该任务相关的模型、训练器、验证器和预测器类。
具体来说,对于每种任务类型,task_map
中定义了以下内容:
- classify:与分类任务相关的模型和类,包括
ClassificationModel
、ClassificationTrainer
、ClassificationValidator
和ClassificationPredictor
。 - detect:与检测任务相关的模型和类,包括
DetectionModel
、DetectionTrainer
、DetectionValidator
和DetectionPredictor
。 - segment:与分割任务相关的模型和类,包括
SegmentationModel
、SegmentationTrainer
、SegmentationValidator
和SegmentationPredictor
。 - pose:与姿态估计任务相关的模型和类,包括
PoseModel
、PoseTrainer
、PoseValidator
和PosePredictor
。 - obb:与方向边界框任务相关的模型和类,包括
OBBModel
、OBBTrainer
、OBBValidator
和OBBPredictor
。
通过这种方式,YOLO
类能够灵活地映射不同的任务到相应的模型和处理类,使得在使用 YOLO 进行各种计算机视觉任务时,能够方便地选择和使用相应的功能。
12.系统整体结构(节选)
整体功能和构架概括
该程序整体上是一个用于实现和训练 YOLOv8(You Only Look Once)目标检测模型的框架,涵盖了从模型定义、训练、预测到可视化等多个方面。程序结构清晰,模块化设计使得各个功能模块相对独立,便于维护和扩展。主要功能包括:
- 模型定义:实现了不同类型的 YOLO 模型(如检测、分类、姿态估计等),并支持多种改进算法。
- 数据处理:提供了数据集构建、数据增强和预处理的功能,以适应不同的训练需求。
- 训练与验证:包含训练和验证的逻辑,能够记录损失和训练进度,并支持多种训练策略。
- 预测与推理:实现了对输入图像的推理功能,能够输出检测结果和关键点信息。
- 可视化:提供了可视化工具,用于绘制训练样本、损失曲线和其他指标,便于用户分析训练过程。
文件功能整理表
文件路径 | 功能描述 |
---|---|
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\lsknet.py | 实现 LSKNet 模型,包括多层感知机、注意力机制和深度卷积等模块,适用于图像处理任务。 |
code\ultralytics\models\yolo\detect\train.py | 定义 YOLO 检测模型的训练逻辑,包括数据集构建、数据加载、模型训练和损失记录等功能。 |
ui.py | 启动 Streamlit 应用,方便用户在当前 Python 环境中运行指定的脚本。 |
code\ultralytics\models\yolo\pose\predict.py | 实现姿态检测模型的预测功能,处理输入图像并返回检测结果和关键点信息。 |
train.py | 提供训练 YOLO 模型的框架,包含数据处理、模型训练和验证等功能。 |
code\ultralytics\models\yolo\model.py | 定义 YOLO 模型类,映射不同任务(检测、分类、分割、姿态估计等)到相应的模型和处理类。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\plotting.py | 提供可视化工具,用于绘制训练样本、损失曲线和其他指标,帮助用户分析训练过程。 |
code\ultralytics\utils\callbacks\hub.py | 实现模型训练过程中的回调功能,支持模型的保存、加载和监控等。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\classify\__init__.py | 初始化分类模型模块,包含相关类和函数的导入。 |
code\ultralytics\trackers\byte_tracker.py | 实现 ByteTracker,用于目标跟踪任务,提供高效的目标跟踪算法。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\classify\train.py | 定义 YOLO 分类模型的训练逻辑,包含数据集构建、模型训练和验证等功能。 |
code\ultralytics\data\augment.py | 提供数据增强功能,包括图像的随机变换、裁剪和颜色调整等,以提高模型的泛化能力。 |
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\solutions\__init__.py | 初始化解决方案模块,包含相关类和函数的导入。 |
这个表格总结了各个文件的主要功能,帮助用户快速了解程序的结构和各个模块的作用。
注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。
13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)
参考原始博客1: https://gitee.com/qunshansj/butane421
参考原始博客2: https://github.com/VisionMillionDataStudio/butane421